【題目】)矩形中,.分別以所在直線為軸,軸,建立如圖1所示的平面直角坐標(biāo)系.是邊上一個(gè)動點(diǎn)(不與重合),過點(diǎn)的反比例函數(shù)y=()的圖像與邊交于點(diǎn).
(1)當(dāng)點(diǎn)運(yùn)動到邊的中點(diǎn)時(shí),求點(diǎn)的坐標(biāo);
(2)連接EF、AB,求證:EF∥AB;
(3)如圖2,將沿折疊,點(diǎn)恰好落在邊上的點(diǎn)處,求此時(shí)反比例函數(shù)的解析式.
【答案】(1)E(4,4) ;(2)見解析;(3)
【解析】(1)先求F坐標(biāo),再求函數(shù)解析式,再求E坐標(biāo);
(2)由平行線分線段成比例性質(zhì)定理可得.即由 ,,得,故得EF∥AB;
(3)過點(diǎn)E作EN⊥OB,垂足為N,先證△ENG∽△GBF,得 即,可求GB=2,由GB2+BF2=GF2,得,解得,k=12,故.
因?yàn)镕是BC的中點(diǎn),
所以,BF=2,
所以,F(xiàn)(8,2)
把F(8,2)代入y=,得2=,
解得k=16,
所以,y=
當(dāng)y=4時(shí),x=4
所以,E(4,4)
(2)由已知可設(shè)E(,4),F(xiàn)(8,)
所以,EC=8-,CF=4-.
所以, ,
所以,,
所以,EF∥AB;
(3)過點(diǎn)E作EN⊥OB,垂足為N
由題意得,EN=AO=4,EG=EC=8- ,GF=CF=4-,
因?yàn),?/span>EGN+∠FGB=∠FGB+∠GFB=900
所以,∠EGN=∠GFB,
又因?yàn),?/span>ENG=∠GBF=900
所以,△ENG∽△GBF,
所以,
所以, ,
整理得,GB=2,
因?yàn)椋?/span>GB2+BF2=GF2
所以, ,
解得,k=12
所以,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠D=135°,AD=6,CE=2,點(diǎn)P是線段AC上一動點(diǎn),點(diǎn)F是線段AB上一動點(diǎn),則PE+PF的最小值是( 。
A. 3 B. 6 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小芳從家騎自行車去學(xué)校,所需時(shí)間y(min)與騎車速度x(m/min)之間的反比例函數(shù)關(guān)系如圖.
(1)小芳家與學(xué)校之間的距離是多少?
(2)寫出y與x的函數(shù)表達(dá)式;
(3)若小芳7點(diǎn)20分從家出發(fā),預(yù)計(jì)到校時(shí)間不超過7點(diǎn)28分,請你用函數(shù)的性質(zhì)說明小芳的騎車速度至少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動3個(gè)單位長度,再向左移動5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是-2.已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請參照圖并思考,完成下列各題.
(1) 若點(diǎn)A表示數(shù),將A點(diǎn)向右移動5個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 ,此時(shí) A,B兩點(diǎn)間的距離是________.
(2) 若點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動6個(gè)單位長度,再向右移動5個(gè)單位長度后到達(dá)點(diǎn)B,則B表示的數(shù)是________;此時(shí) A,B兩點(diǎn)間的距離是________.
(3)若A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動n個(gè)單位長度,再向左移動t個(gè)單位長度后到達(dá)終點(diǎn)B,此時(shí)A、B兩點(diǎn)間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動課上,小芳到操場上測量旗桿的高度,她的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時(shí)目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,利用她所測數(shù)據(jù),求旗桿的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中 ,AB=4,BC=8,點(diǎn)E為CD中點(diǎn),P、Q為BC邊上兩個(gè)動點(diǎn),且PQ=2,當(dāng)四邊形APQE周長最小時(shí),BP的長為( )
A. 1 B. 2 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)O運(yùn)動到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)B運(yùn)動到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動的時(shí)間為t秒.
問:(1)動點(diǎn)P從點(diǎn)A運(yùn)動至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.例如:若數(shù)軸上數(shù)2表示的點(diǎn)與數(shù)﹣2表示的點(diǎn)重合,則數(shù)軸上數(shù)﹣4表示的點(diǎn)與數(shù)4表示的點(diǎn)重合,根據(jù)你對例題的理解,解答下列問題:
若數(shù)軸上數(shù)﹣3表示的點(diǎn)與數(shù)1表示的點(diǎn)重合.(根據(jù)此情境解決下列問題)
①則數(shù)軸上數(shù)3表示的點(diǎn)與數(shù) 表示的點(diǎn)重合.
②若點(diǎn)A到原點(diǎn)的距離是5個(gè)單位長度,并且A、B兩點(diǎn)經(jīng)折疊后重合,則B點(diǎn)表示的數(shù)是 .
③若數(shù)軸上M、N兩點(diǎn)之間的距離為2018,并且M、N兩點(diǎn)經(jīng)折疊后重合,
如果M點(diǎn)表示的數(shù)比N點(diǎn)表示的數(shù)大,則M點(diǎn)表示的數(shù)是 .則N點(diǎn)表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)的圖象在每一個(gè)象限內(nèi),y值隨x值的增大而增大的是( )
A.y=﹣x+1
B.y=x2﹣1
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com