【題目】如圖,將一些形狀相同的小五角星按圖中所規(guī)放,據(jù)此規(guī)律,第10個圖形有( 。﹤五角星.

A. 120B. 121C. 99D. 100

【答案】A

【解析】

分析數(shù)據(jù)可得:第1個圖形中小五角星的個數(shù)為3;第2個圖形中小五角星的個數(shù)為8;第3個圖形中小五角星的個數(shù)為15;第4個圖形中小五角星的個數(shù)為24;則知第n個圖形中小五角星的個數(shù)為nn+1+n.故第10個圖形中小五角星的個數(shù)為10×11+10=120個.

1個圖形中小五角星的個數(shù)為3;

2個圖形中小五角星的個數(shù)為8;

3個圖形中小五角星的個數(shù)為15;

4個圖形中小五角星的個數(shù)為24

則知第n個圖形中小五角星的個數(shù)為nn+1+n

故第10個圖形中小五角星的個數(shù)為10×11+10120個,

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】直線與反比例函數(shù)>0)的圖象分別交于點 A(,4)和點B(8,),與坐標軸分別交于點C和點D.

(1)求直線AB的解析式;

(2)觀察圖象,當時,直接寫出的解集;

(3)若點P是軸上一動點,當△COD與△ADP相似時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交A-3,0),B1,0)兩點,與y軸交于點C0,3),點D為拋物線的頂點.

1)求拋物線的解析式;

2)設點T在第二象限的拋物線上,若其關于原點的對稱點也在拋物線上,求點T的坐標;

3)點M為線段AB上一點(點M不與點AB重合),過Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過PPQAB交拋物線于點Q,過QQNx軸于N,當矩形PMNQ的周長最大時,求△AEM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,正方形ABCD,點E在邊AD上,AFBE,垂足為點F,點G在線段BF上,BG=AF

1)求證:CGBE;

2)如果點EAD的中點,聯(lián)結CF,求證:CF=CB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學初三年級積極推進走班制教學。為了了解一段時間以來,至善班的學習效果,年級組織了多次定時測試,現(xiàn)隨機選取甲、乙兩個至善班,從中各抽取名同學在某一次定時測試中的數(shù)學成績,其結果記錄如下:

收集數(shù)據(jù):

至善班甲班的名同學的數(shù)學成績統(tǒng)計(滿分為分) (單位:分)

至善班=乙班的名同學的數(shù)學成績統(tǒng)計(滿分為分) (單位:分)

整理數(shù)據(jù):(成績得分用表示)

分析數(shù)據(jù),并回答下列問題:

完成下表:

至善班甲班的扇形圖中,成績在的扇形中,說對的圓心角的度數(shù)為 .估計全部至善班人中優(yōu)秀人數(shù)為 .分及以上為優(yōu)秀).

根據(jù)以上數(shù)據(jù),你認為至善班 班(填)所選取做樣本的同學的學習效果更好一些,你所做判斷的理由是:

.

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鮮豐水果店計劃用/盒的進價購進一款水果禮盒以備銷售.

據(jù)調查,當該種水果禮盒的售價為/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?

在實際銷售時,由于天氣和運輸?shù)脑,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結果該月水果店銷售該水果禮盒的利潤達到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線ACBD交于O,EF過點OAD,BC分別交于E,F,若AB4,BC5,OE1.5,則四邊形EFCD的周長_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y()與甲出發(fā)的時間x()之間的關系如圖中折線OA-AB-BC-CD所示.

(1)求線段AB的表達式,并寫出自變量x的取值范圍;

(2)求乙的步行速度;

(3)求乙比甲早幾分鐘到達終點?

查看答案和解析>>

同步練習冊答案