【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.

【答案】
(1)證明:如圖,∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,AD是BC邊上的中線,

∴AE=DE,BD=CD,

在△AFE和△DBE中,

,

∴△AFE≌△DBE(AAS);

∴AF=DB.

∵DB=DC,

∴AF=CD,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點,

∴AD=DC= BC,

∴四邊形ADCF是菱形


(2)解:連接DF,

∵AF∥BC,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S= ACDF=10


【解析】(1)首先根據(jù)題意畫出圖形,由E是AD的中點,AF∥BC,易證得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠ABC=90°,D是BC的中點,可得AD=BD=CD=AF,證得四邊形ADCF是平行四邊形,繼而判定四邊形ADCF是菱形;(2)首先連接DF,易得四邊形ABDF是平行四邊形,即可求得DF的長,然后由菱形的面積等于其對角線積的一半,求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)運甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求該拋物線與x軸的交點坐標(biāo);
(2)若a= ,c=2+b且拋物線在﹣2≤x≤2區(qū)間上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在實數(shù)x,使得相應(yīng)的y的值為1,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)x2+4x+1=0
(2)(x﹣1)2+x=1
(3)3x2﹣2x﹣4=0
(4)x2﹣7x+12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB.證明:

(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點E為AB的中點,F(xiàn)為BC上任意一點,把△BEF沿直線EF翻折,點B的對應(yīng)點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有(

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形;
②當(dāng)AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組與方程.
(1)
(2) =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:45°<∠A<90°,則下列各式成立的是(
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA

查看答案和解析>>

同步練習(xí)冊答案