【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為時,四邊形AMDN是矩形;
②當AM的值為時,四邊形AMDN是菱形.

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴ND∥AM,

∴∠NDE=∠MAE,∠DNE=∠AME,

又∵點E是AD邊的中點,

∴DE=AE,

∴△NDE≌△MAE,

∴ND=MA,

∴四邊形AMDN是平行四邊形


(2)1;2
【解析】解:(2)①當AM的值為1時,四邊形AMDN是矩形.理由如下:
∵AM=1= AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四邊形AMDN是矩形;
故答案為:1;
②當AM的值為2時,四邊形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等邊三角形,
∴AM=DM,
∴平行四邊形AMDN是菱形,
故答案為:2.

(1)利用菱形的性質和已知條件可證明四邊形AMDN的對邊平行且相等即可;(2)①有(1)可知四邊形AMDN是平行四邊形,利用有一個角為直角的平行四邊形為矩形即∠DMA=90°,所以AM= AD=1時即可;②當平行四邊形AMND的鄰邊AM=DM時,四邊形為菱形,利用已知條件再證明三角形AMD是等邊三角形即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:﹣14+ sin60°+( 2﹣(π﹣ 0
(2)先化簡,再求值:(1﹣ )÷ ,其中x= ﹣1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD的邊AB延長至點E,使BE=AB,連接DE,EC,DE,交BC于點O.

(1)求證:△ABD≌△BEC;
(2)連接BD,若∠BOD=2∠A,求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F.

(1)證明四邊形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,SABC=4 ,點P、Q、K分別為線段AB、BC、AC上任意一點,則PK+QK的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象如圖所示:

(1)求出該一次函數(shù)的表達式;
(2)當x=10時,y的值是多少?
(3)當y=12時,x的值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應增加的條件不能是(

A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于坐標平面內的點,現(xiàn)將該點向右平移1個單位,再向上平移2的單位,這種點的運動稱為點A的斜平移,如點P(2,3)經1次斜平移后的點的坐標為(3,5),已知點A的坐標為(1,0).
(1)分別寫出點A經1次,2次斜平移后得到的點的坐標.
(2)如圖,點M是直線l上的一點,點A關于點M的對稱點的點B,點B關于直線l的對稱軸為點C.
①若A、B、C三點不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點B由點A經n次斜平移后得到,且點C的坐標為(7,6),求出點B的坐標及n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值: ,其中 是不等式組 的整數(shù)解

查看答案和解析>>

同步練習冊答案