【題目】如圖,在四邊形ABCD中,∠DAC=∠ACB,要使四邊形ABCD成為平行四邊形,則應(yīng)增加的條件不能是(

A.AD=BC
B.OA=OC
C.AB=CD
D.∠ABC+∠BCD=180°

【答案】C
【解析】解:∵∠DAC=∠ACB,
∴AD∥BC,
A、根據(jù)平行四邊形的判定有一組對邊平行且相等的四邊形是平行四邊形,不符合題意;
B、可利用對角線互相平分的四邊形是平行四邊形判斷平行四邊形,不符合題意;
C、可能是等腰梯形,故本選項錯誤,符合題意;
D、根據(jù)AD∥BC和∠ABC+∠BAD=180°,能推出符合判斷平行四邊形的條件,不符合題意.
故選C.
【考點精析】利用平行四邊形的判定對題目進行判斷即可得到答案,需要熟知兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下說法: ①關(guān)于x的方程x+ =c+ 的解是x=c(c≠0);
②方程組 的正整數(shù)解有2組;
③已知關(guān)于x,y的方程組 ,其中﹣3≤a≤1,當(dāng)a=1時,方程組的解也是方程x+y=4﹣a的解;
其中正確的有(
A.②③
B.①②
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB.證明:

(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形;
②當(dāng)AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.

(1)將圖補充完整;
(2)本次共抽取員工人,每人所創(chuàng)年利潤的眾數(shù)是 , 平均數(shù)是
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上位優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組與方程.
(1)
(2) =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解學(xué)生的體育鍛煉情況,隨機抽查了部分學(xué)生一周參加體育鍛煉的時間,得到如圖的條形統(tǒng)計圖,根據(jù)圖形解答下列問題:
(1)這次抽查了名學(xué)生;
(2)所抽查的學(xué)生一周平均參加體育鍛煉多少小時?
(3)已知該校有1200名學(xué)生,估計該校有多少名學(xué)生一周參加體育鍛煉的時間超過6小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某周日上午8:00小宇從家出發(fā),乘車1小時到達(dá)某活動中心參加實踐活動.11:00時他在活動中心接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/小時的平均速度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原路返回.設(shè)小宇離家x(小時)后,到達(dá)離家y(千米)的地方,圖中折線OABCD表示y與x之間的函數(shù)關(guān)系.
(1)活動中心與小宇家相距千米,小宇在活動中心活動時間為小時,他從活動中心返家時,步行用了小時;
(2)求線段BC所表示的y(千米)與x(小時)之間的函數(shù)關(guān)系式(不必寫出x所表示的范圍);
(3)根據(jù)上述情況(不考慮其他因素),請判斷小宇是否能在12:00前回到家,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案