【題目】如圖,已知ABC中∠BAC=135°,點(diǎn)E,點(diǎn)FBC上,EM垂直平分ABAB于點(diǎn)M,FN垂直平分ACAC于點(diǎn)NBE=12,CF=9

1)判斷EAF的形狀,并說明理由;

2)求EAF的周長(zhǎng).

【答案】1EAF為直角三角形.理由見解析;(2)△EAF的周長(zhǎng)=36

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)得出BE=AE,AF=CF,再由∠BAC=135°得出∠B+C=180°﹣∠BAC=180°135°=45°,故∠BAE+CAF=45°,∠EAF=135°45°=90°由此可得出結(jié)論;

2)由(1)知△EAF是直角三角形,再根據(jù)勾股定理求出EF的長(zhǎng),進(jìn)而可得出結(jié)論.

1EAF為直角三角形.

EMAB的垂直平分線,

BE=AE

∴∠BAE=B

FNAC的垂直平分線,

AF=CF,

∴∠CAF=C

.∵∠BAC=135°,

∴∠B+C=180°﹣∠BAC=180°135°=45°,

∴∠BAE+CAF=45°

∴∠EAF=135°45°=90°,

∴△EAF為直角三角形;

2)在EAF中,

∵∠EAF=90°,

EF2=AE2+AF2

BE=12,CF=9

EF2=122+92=225,

EF=15,

∴△EAF的周長(zhǎng)=12+9+15=36

故答案為:(1EAF為直角三角形.理由見解析;(2)△EAF的周長(zhǎng)=36

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幢房屋的側(cè)面外墻壁的形狀如圖所示,它由等腰三角形OCD和矩形ABCD組成,∠OCD=25°,外墻壁上用涂料涂成顏色相同的條紋,其中一塊的形狀是四邊形EFGH,測(cè)得FG∥EH,GH=2.6m,∠FGB=65°.

(1)求證:GF⊥OC;
(2)求EF的長(zhǎng)(結(jié)果精確到0.1m).
(參考數(shù)據(jù):sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于給定的兩個(gè)函數(shù),任取自變量x的一個(gè)值,當(dāng)x<0時(shí),它們對(duì)應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x≥0時(shí),它們對(duì)應(yīng)的函數(shù)值相等,我們稱這樣的兩個(gè)函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x﹣1,它的相關(guān)函數(shù)為y=
(1)已知點(diǎn)A(﹣5,8)在一次函數(shù)y=ax﹣3的相關(guān)函數(shù)的圖象上,求a的值;
(2)已知二次函數(shù)y=﹣x2+4x﹣ .①當(dāng)點(diǎn)B(m, )在這個(gè)函數(shù)的相關(guān)函數(shù)的圖象上時(shí),求m的值;
②當(dāng)﹣3≤x≤3時(shí),求函數(shù)y=﹣x2+4x﹣ 的相關(guān)函數(shù)的最大值和最小值;
(3)在平面直角坐標(biāo)系中,點(diǎn)M,N的坐標(biāo)分別為(﹣ ,1),( ,1),連結(jié)MN.直接寫出線段MN與二
次函數(shù)y=﹣x2+4x+n的相關(guān)函數(shù)的圖象有兩個(gè)公共點(diǎn)時(shí)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1l2,以直線l1上的點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫弧,分別交直線l1l2BC兩點(diǎn),連接AC、BC,若∠ABC=65°,則∠1的度數(shù)是(  )

A. 35° B. 50° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在等邊△ABC中,AC=8,點(diǎn)D,E,F(xiàn)分別在三邊AB,BC,AC上,且AF=2,F(xiàn)D⊥DE,∠DFE=60°,則AD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:

(1) 求出△PQR的面積;

(2) 畫出△P′Q′R′,使△P′Q′R′△PQR關(guān)于y軸對(duì)稱,寫出點(diǎn)P′、Q′R′的坐標(biāo);

(3)連接PP′QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD= ,求 的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OE平分,OF平分

是直角,,求的度數(shù).

,,請(qǐng)用x的代數(shù)式來表示直接寫出結(jié)果就行

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C,D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A,B,C,D各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)“伴侶正方形”.

(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長(zhǎng);
(2)如圖2,若某函數(shù)是反比例函數(shù) (k>0),它的圖象的“伴侶正方形”為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)你直接寫出該二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案