【題目】如圖,已知OE平分,OF平分
若是直角,,求的度數(shù).
若,,,請用x的代數(shù)式來表示直接寫出結果就行.
【答案】(1)45°(2)
【解析】
(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根據(jù)OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度數(shù),由∠EOF=∠EOC∠COF可得答案;
(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC=x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根據(jù)∠EOF=∠EOC∠COF可得答案.
解:(1)∵∠AOB是直角,∠BOC=60°,
∴∠AOC=∠AOB+∠BOC=90°+60°=150°,
∵OE平分∠AOC,
∴∠EOC=∠AOC=75°,
∵OF平分∠BOC,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC∠COF=75°30°=45°;
(2)∵∠AOC=x°,OE平分∠AOC,
∴∠EOC=∠AOC=x°,
∵OF平分∠BOC,∠BOC=60°,
∴∠COF=∠BOC=30°,
∴∠EOF=∠EOC∠COF=x°30°,即y=x30.
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,已知點 A(a+b,2-a)與點B(a-5,b-2a)關于y軸對稱.
(1)求A、B兩點的坐標;
(2)如果點B關于x軸的對稱點是C,在圖中標出點A、B、C,并求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中∠BAC=135°,點E,點F在BC上,EM垂直平分AB交AB于點M,FN垂直平分AC交AC于點N,BE=12,CF=9.
(1)判斷△EAF的形狀,并說明理由;
(2)求△EAF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“小組合作制”正在七年級如火如茶地開展,旨在培養(yǎng)七年級學生的合作學習的精神和能力,學會在合作中自主探索.數(shù)學課上,吳老師在講授“角平分線”時,設計了如下四種教學方法:①教師講授,學生練習;②學生合作交流,探索規(guī)律;③教師引導學生總結規(guī)律,學生練習;④教師引導學生總結規(guī)律,學生合作交流,吳老師將上述教學方法作為調(diào)研內(nèi)容發(fā)到七年級所有同學手中要求每位同學選出自己最喜歡的一種,然后吳老師從所有調(diào)查問卷中隨機抽取了若干份調(diào)查問卷作為樣本,統(tǒng)計如下:
序號①②③④代表上述四種教學方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請回答問題:
(1)在后來的抽樣調(diào)查中,吳老師共抽取 位學生進行調(diào)查;并將條形統(tǒng)計圖補充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級學生中選擇④種教學方法的有540人,請估計七年級總人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:“以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?”
譯文:“用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?”
設井深為x尺,根據(jù)題意列方程,正確的是( 。
A. 3(x+4)=4(x+1) B. 3x+4=4x+1
C. 3(x﹣4)=4(x﹣1) D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面直角坐標系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動點P,從距離O點18cm的點M處出發(fā),沿線段MO、射線OB運動,速度為2cm/s;動點Q從點O出發(fā),沿射線OB運動,速度為lcm/s;P、Q同時出發(fā),同時射線OC繞著點O從OA上以每秒5°的速度順時針旋轉(zhuǎn),設運動時間是t(s).
(1)當點P在MO上運動時,PO=______cm(用含t的代數(shù)式表示);
(2)當點P在線段MO上運動時,t為何值時,OP=OQ?此時射線OC是∠AOB的角平分線嗎?如果是請說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請求出t的值并求出此時∠BOC的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
數(shù)學活動課上,老師準備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積.方法1:______;方法2:_______.
(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關系._______;
(3)類似的,請你用圖1中的三種紙片拼一個使長方形面積為:3a2+7ab+2b2,并對3a2+7ab+2b2因式分解為_______.
(4)根據(jù)(2)題中的等量關系,解決如下問題:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(x﹣2016)2+(x﹣2018)2=34,求(x﹣2017)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件?
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com