【題目】已知點A,B分別是x軸、y軸上的動點,點C,D是某個函數(shù)圖象上的點,當四邊形ABCD(A,B,C,D各點依次排列)為正方形時,我們稱這個正方形為此函數(shù)圖象的“伴侶正方形”.
例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個“伴侶正方形”.

(1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長;
(2)如圖2,若某函數(shù)是反比例函數(shù) (k>0),它的圖象的“伴侶正方形”為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
(3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個點坐標為(3,4),請你直接寫出該二次函數(shù)的解析式.

【答案】
(1)解:(I)當點A在x軸正半軸、點B在y軸負半軸上時:

正方形ABCD的邊長為

(II)當點A在x軸負半軸、點B在y軸正半軸上時:

設(shè)正方形邊長為a,易得3a= ,

解得a= ,此時正方形的邊長為

∴所求“伴侶正方形”的邊長為


(2)解:如圖,作DE⊥x軸,CF⊥y軸,垂足分別為點E、F,

易證△ADE≌△BAO≌△CBF.

∵點D的坐標為(2,m),m<2,

∴DE=OA=BF=m,

∴OB=AE=CF=2﹣m.

∴OF=BF+OB=2,

∴點C的坐標為(2﹣m,2).

∴2m=2(2﹣m),解得m=1.

∴反比例函數(shù)的解析式為y=


(3)解:實際情況是拋物線開口向上的兩種情況中,另一個點都在(3,4)的左側(cè),而開口向下時,另一點都在(3,4)的右側(cè),與上述解析明顯不符合

a、當點A在x軸正半軸上,點B在y軸正半軸上,點C坐標為(3,4)時:另外一個頂點為(4,1),對應(yīng)的函數(shù)解析式是y=﹣ x2+ ;

b、當點A在x 軸正半軸上,點 B在 y軸正半軸上,點D 坐標為(3,4)時:不存在,

c、當點A 在 x 軸正半軸上,點 B在 y軸負半軸上,點C 坐標為(3,4)時:不存在

d、當點A在x 軸正半軸上,點B在y軸負半軸上,點D坐標為(3,4)時:另外一個頂點C為(﹣1,3),對應(yīng)的函數(shù)的解析式是y= x2+ ;

e、當點A在x軸負半軸上,點B在y軸負半軸上,點C坐標為(3,4)時,另一個頂點D的坐標是(7,﹣3)時,對應(yīng)的函數(shù)解析式是y=﹣ x2+ ;

f、當點A在x軸負半軸上,點B在y軸負半軸上,點C坐標為(3,4)時,另一個頂點D的坐標是(﹣4,7)時,對應(yīng)的拋物線為y= x2+ ;

故二次函數(shù)的解析式分別為:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+


【解析】(1)先正確地畫出圖形,再利用正方形的性質(zhì)確定相關(guān)點的坐標從而計算正方形的邊長.
(2)因為ABCD為正方形,所以可作垂線得到等腰直角三角形,利用點D(2,m)的坐標表示出點C的坐標,可求出m的值 ,即可得到反比例函數(shù)的解析式.
(3)由拋物線開口既可能向上,也可能向下.當拋物線開口向上時,正方形的另一個頂點也是在拋物線上,這個點既可能在點(3,4)的左邊,也可能在點(3,4)的右邊,過點(3,4)向x軸作垂線,利用全等三角形確定線段的長即可確定拋物線上另一個點的坐標;當拋物線開口向下時也是一樣地分為兩種情況來討論,即可得到所求的結(jié)論.
【考點精析】通過靈活運用反比例函數(shù)的圖象和反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點;性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中∠BAC=135°,點E,點FBC上,EM垂直平分ABAB于點M,FN垂直平分ACAC于點N,BE=12,CF=9

1)判斷EAF的形狀,并說明理由;

2)求EAF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB=60°,AOB的邊OA上有一動點P,從距離O18cm的點M處出發(fā),沿線段MO、射線OB運動,速度為2cm/s;動點Q從點O出發(fā),沿射線OB運動,速度為lcm/s;PQ同時出發(fā),同時射線OC繞著點OOA上以每秒的速度順時針旋轉(zhuǎn),設(shè)運動時間是ts).

1)當點PMO上運動時,PO=______cm(用含t的代數(shù)式表示);

2)當點P在線段MO上運動時,t為何值時,OP=OQ?此時射線OCAOB的角平分線嗎?如果是請說明理由.

3)在射線OB上是否存在P、Q相距2cm?若存在,請求出t的值并求出此時BOC的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動課上,老師準備了若干個如圖1的三種紙片,A種紙片邊長為a的正方形,B種紙片是邊長為b的正方形,C種紙片長為a、寬為b的長方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

(1)請用兩種不同的方法求圖2大正方形的面積.方法1______;方法2_______

(2)觀察圖2,請你寫出下列三個代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系._______;

(3)類似的,請你用圖1中的三種紙片拼一個使長方形面積為:3a2+7ab+2b2,并對3a2+7ab+2b2因式分解為_______.

(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:a+b5,a2+b211,求ab的值;

②已知(x2016)2+(x2018)234,求(x2017)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點,連接CE,BD,過點E作FE⊥CE于點E,交AD于點F,連接CF,已知2AD=AB=BC.

(1)求證:CE=BD;
(2)若AB=4,求AF的長度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,ABC的三個頂點的位置如圖所示.現(xiàn)將ABC沿著點A到點D的方向平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.

1)畫出ABCAB邊上的高CH;(提醒:別忘了標注字母);

2)請畫出平移后的DEF;

3)平移后,線段AB掃過的部分所組成的封閉圖形的面積是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進行了三項素質(zhì)測試.各項測試成績?nèi)绫砀袼荆?/span>

測試項目

測試成績

專業(yè)知識

74

87

90

語言能力

58

74

70

綜合素質(zhì)

87

43

50

(1)如果根據(jù)三次測試的平均成績確定人選,那么誰將被錄用?

(2)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?

(3)請重新設(shè)計專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設(shè)計的比例為xy:1,且x+y+1=10,則x   ,y   .(寫出xy的一組整數(shù)值即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元
(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件?
(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用矩形紙片折出直角的平分線,下列折法正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案