【題目】畫出函數(shù)y=2x+4的圖像,并結合圖像解決下列問題:

(1)寫出方程2x+4=0的解;

(2)當﹣4≤y時,求相應x的取值范圍.

【答案】(1)x=-2;(2)x≥-4.

【解析】

利用“兩點確定一條直線”作出函數(shù)y=2x+4的圖象.

(1)根據(jù)圖象直接寫出方程2x+4=0的解;

(2)根據(jù)一次函數(shù)圖象的增減性寫出當-4≤y,x的取值范圍.

∵函數(shù)的解析式為y=2x+4,

∴當x=0時,y=4.當y=0時,x=-2.即直線y=2x+4經過點(0,4),(-2,0).其圖象如圖所示:

(1)根據(jù)圖象知,當y=0時,x=-2,即方程2x+4=0的解是x=-2;

(2)∵y=2x+4,

∴當y=-4時,x=-4,

根據(jù)圖象知,yx的增大而增大,所以當-4≤y時,x的取值范圍是x≥-4.

故答案為:(1)x=-2;(2)x≥-4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數(shù)是單獨租用甲種車輛完成任務天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,函數(shù)y= (k1>0,x>0)、函數(shù)y= (k2<0,x<0)的圖象分別經過OABC的頂點A、C,點B在y軸正半軸上,AD⊥x軸于點D,CE⊥x軸于點E,若|k1|:|k2|=9:4,則AD:CE的值為( )

A.4:9
B.2:3
C.3:2
D.9:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請完成下面的解答過程.

如圖,∠1=B,∠C=110°,求∠3的度數(shù).

解:∵∠1=B,

AD   。( 。

∴∠C+    =180°.(兩直線平行,同旁內角互補)

∵∠C=110°,

∴∠2=    °.

∴∠3=    =70°.( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,決定開設以下體育課外活動項目:A.版畫 B.保齡球C.航模 D.園藝種植,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的保齡球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加保齡球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分線與AB的垂直平分線DG交于點D,DE⊥CA的延長線于點E,DF⊥CB于點F.

(1)判斷△ABC的形狀,并說明理由;

(2)求證:AE=BF;

(3)求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉動,轉過的角度記作a;設半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:
(1)若R=2,m=1,如圖1,當旋轉30°時,圓心O′到射線AB的距離是;如圖2,當a=°時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時,為了對任意旋轉角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關系,請你幫助他直接寫出這個關系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍是 , 并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,AB邊上的高CD=4,點P從點A出發(fā),沿AB以每秒3個單位長度的速度向終點B運動,當點P不與點A、B重合時,過點P作PQ⊥AB,交邊AC或邊BC于點Q,以PQ為邊向右側作正方形PQMN.設正方形PQMN與△ABC重疊部分圖形的面積為S(平方單位),點P運動的時間為t(秒).

(1)直接寫出tanB的值為
(2)求點M落在邊BC上時t的值.
(3)當正方形PQMN與△ABC重疊部分為四邊形時,求S與t之間的函數(shù)關系式.
(4)邊BC將正方形PQMN的面積分為1:3兩部分時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中.AB=ACBAC=90EAC邊上的一點,延長BAD,使AD=AE,連接DE,CD.

(l)圖中是否存在兩個三角形全等?如果存在請寫出哪兩個三角形全等,并且證明;如果不存在,請說明理由;

(2)若∠CBE=30,求∠ADC的度數(shù).

查看答案和解析>>

同步練習冊答案