【題目】四邊形 ABCD 中,E 為邊 BC 上一點,F 為邊 CD 上一點,且∠AEF=90°

1)如圖 1,若 ABCD 為正方形,E BC 中點,求證:

2)若 ABCD 為平行四邊形,∠AFE=ADC,

①如圖 2,若∠AFE=60°,求的值;

②如圖 3,若 AB=BCEC=2CF.直接寫出 cosAFE 值為   

【答案】1)見解析(23

【解析】

1)如圖1中,設(shè)正方形的邊長為2a.只要證明△ABE∽△ECF,可得,求出CF、DF即可解決問題;

2)如圖2中,在AD上取一點H,使得FHDF.只要證明△AEF是等邊三角形,推出AF2EF,再證明△AHF∽△FCE,可得ECHFEFAF12;

3)如圖3,作FTFDAD于點T,作FHADH,證△FCE∽△ATF,設(shè)CF2,則CE4,可設(shè)ATx,則TF2x,ADCD2x2DHDT,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.

1)證明:如圖1中,設(shè)正方形的邊長為2a

∵四邊形ABCD是正方形,

∴∠B=∠C90°

∵∠AEF90°,

∴∠AEB+∠FEC90°,∠FEC+∠EFC90°,

∴∠AEB=∠EFC

∴△ABE∽△ECF,

BEECa,ABCD2a

CFa,DFCDCFa,

;

2)如圖2中,在AD上取一點H,使得FHDF,

∵∠AEF90°,∠AFE=∠D60°

AF2EF,

FHDF

∴△DHF是等邊三角形,

∴∠FHD60°

∴∠AHF120°,

∵四邊形ABCD是平行四邊形,

ADBC,

∴∠C180°D120°

∴∠AHF=∠C,

∵∠AFC=∠D+∠FAH=∠EFC+∠AFE,∠AFE=∠D,

∴∠HAF=∠EFC,

∴△AHF∽△FCE,

ECHFEFAF12,

如圖3,作FTFDAD于點T,作FHADH,

則∠FTD=∠FDT,

180°FTD180°D,

∴∠ATF=∠C,

又∵∠TAF+∠D=∠AFE+∠CFE,且∠D=∠AFE,

∴∠TAF=∠CFE,

∴△FCE∽△ATF,

,

設(shè)CF2,則CE4,可設(shè)ATx,則TF2xADCD2x2,

DHDT,且,

cosAFEcosD,得,

解得x6,(x=0舍去)

cosAFE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點、在雙曲線上,軸于,軸于點交于點,的中點.

1)試判斷四邊形的形狀,并說明理由.

2)若的面積為,求該雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8/千克,下面是他們在活動結(jié)束后的對話.

小麗:如果以10/千克的價格銷售,那么每天可售出300千克.

小強:如果每千克的利潤為3元,那么每天可售出250千克.

小紅:如果以13/千克的價格銷售,那么每天可獲取利潤750元.

【利潤=(銷售價-進價)銷售量】

1)請根據(jù)他們的對話填寫下表:

銷售單價x(元/kg

10

11

13

銷售量ykg




2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x0)的函數(shù)關(guān)系式;

3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求Wx的函數(shù)關(guān)系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標A1,3),與x軸的一個交點B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEBC邊上一點,AB=AE,AE平分DAB,∠EAC=25°,AED的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網(wǎng)絡教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網(wǎng)絡對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網(wǎng)絡教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當今社會手機越來越普遍,有很多人每天過分依賴手機,每天使用手機時間過長而形成了“手機癮”.為了解某高校大學生每天使用手機時間的情況,某社團隨機調(diào)查了部分學生使用手機的時間,將調(diào)查結(jié)果分為五類:A.基本不用;B.平均每天使用12小時;C.平均每天使用24小時;D.平均每天使用46小時;E.平均每天使用超過6小時并把所得數(shù)據(jù)繪制成如圖兩幅不完整的統(tǒng)計圖,請根據(jù)相關(guān)信息,解答下列問題:

1)將條形統(tǒng)計圖補充完整;

2)若每天使用手機的時間超過6小時,則患有嚴重的手機癮.該校共有學生14900人,試估計該校約有多少人患有嚴重的“手機癮”;

3)在被調(diào)查的基本不使用手機的4位同學中有22女,現(xiàn)要從中隨機抽取兩名同學去參加座談會,請你用列表法或樹狀圖法求出所選兩位同學恰好是一名男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線yx+2x軸交于點A,與y軸交于點C,與反比例函數(shù)y在第一象限內(nèi)的圖象交于點B1,3),連接BO,下面三個結(jié)論:①SAOB1.5點(x1,y1)和點(x2,y2)在反比例函數(shù)的圖象上,若x1x2,則y1y2;不等式x+2的解集是0x1.其中正確的有( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國蛟龍號深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點處作業(yè),測得俯角為30°正前方的海底C點處有黑匣子信號發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點處測得俯角為45°正前方的海底C點處有黑匣子信號發(fā)出,請通過計算判斷蛟龍號能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù)≈1.732

查看答案和解析>>

同步練習冊答案