【題目】已知:如圖,AB∥CD,E是AB的中點,CE=DE.

(1)求證:∠AEC=∠BED
(2)求證:AC=BD

【答案】
(1)

證明:∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED


(2)

證明:∵E是AB的中點,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.


【解析】(1)根據(jù)CE=DE得出∠ECD=∠EDC,再利用平行線的性質進行證明即可;(2)根據(jù)SAS證明△AEC與△BED全等,再利用全等三角形的性質證明即可.
(1)根據(jù)CE=DE得出∠ECD=∠EDC,再利用平行線的性質進行證明即可;(2)根據(jù)SAS證明△AEC與△BED全等,再利用全等三角形的性質證明即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,請完成下列表格:

事件A

必然事件

隨機事件

m的值


(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4 , ∠BAD=60°,且AB>4

(1)求∠EPF的大小。
(2)若AP=6,求AE+AF的值。
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)解方程:x2+2x=3;
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形DEFG的邊長分別為2a,2b,點A,D,G在y軸上,坐標原點O為AD的中點,拋物線y=mx2過C,F(xiàn)兩點,連接FD并延長交拋物線于點M.

(1)若a=1,求m和b的值。
(2)求的值。
(3)判斷以FM為直徑的圓與AB所在直線的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2﹣4ax+c的圖象交于A、B兩點(其中點A在點B的左側),與這個二次函數(shù)圖象的對稱軸交于點C.

(1)求點C的坐標
(2)設二次函數(shù)圖象的頂點為D.
①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數(shù)的關系式;
②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長方體貨柜的側面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高。(≈2.236,結果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點B.

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0).

(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標.

查看答案和解析>>

同步練習冊答案