【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過(guò)點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:過(guò)點(diǎn)B作BD⊥x軸,垂足為D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴點(diǎn)B的坐標(biāo)為(﹣3,1)
(2)
解:拋物線y=ax2+ax﹣2經(jīng)過(guò)點(diǎn)B(﹣3,1),
則得到1=9a﹣3a﹣2,
解得a= ,
所以拋物線的解析式為y= x2+ x﹣2
(3)
解:假設(shè)存在點(diǎn)P,使得△ACP仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);
則延長(zhǎng)BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形△ACP1,
過(guò)點(diǎn)P1作P1M⊥x軸,
∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,
∴△MP1C≌△DBC.
∴CM=CD=2,P1M=BD=1,可求得點(diǎn)P1(1,﹣1);
②若以點(diǎn)A為直角頂點(diǎn);
則過(guò)點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,
過(guò)點(diǎn)P2作P2N⊥y軸,同理可證△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,可求得點(diǎn)P2(2,1),
③以A為直角頂點(diǎn)的等腰Rt△ACP的頂點(diǎn)P有兩種情況.即過(guò)點(diǎn)A作直線L⊥AC,在直線L上截取AP=AC時(shí),點(diǎn)P可能在y軸右側(cè),即現(xiàn)在解答情況②的點(diǎn)P2;
點(diǎn)P也可能在y軸左側(cè),即還有第③種情況的點(diǎn)P3.因此,然后過(guò)P3作P3G⊥y軸于G,同理:△AGP3≌△CAO,
∴GP3=OA=2,AG=OC=1,
∴P3為(﹣2,3);
經(jīng)檢驗(yàn),點(diǎn)P1(1,﹣1)與點(diǎn)P2(2,1)都在拋物線y= x2+ x﹣2上,點(diǎn)P3(﹣2,3)不在拋物線上.
【解析】(1)根據(jù)題意,過(guò)點(diǎn)B作BD⊥x軸,垂足為D;根據(jù)角的互余的關(guān)系,易得B到x、y軸的距離,即B的坐標(biāo);(2)根據(jù)拋物線過(guò)B點(diǎn)的坐標(biāo),可得a的值,進(jìn)而可得其解析式;(3)首先假設(shè)存在,分A、C是直角頂點(diǎn)兩種情況討論,根據(jù)全等三角形的性質(zhì),可得答案.
【考點(diǎn)精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=12cm,AC是⊙O的弦,過(guò)點(diǎn)C作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)P,連接BC.
(1)求證:∠PCA=∠B
(2)已知∠P=40°,點(diǎn)Q在優(yōu)弧ABC上,從點(diǎn)A開始逆時(shí)針運(yùn)動(dòng)到點(diǎn)C停止(點(diǎn)Q與點(diǎn)C不重合),當(dāng)△ABQ與△ABC的面積相等時(shí),求動(dòng)點(diǎn)Q所經(jīng)過(guò)的弧長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB∥CD,E是AB的中點(diǎn),CE=DE.
(1)求證:∠AEC=∠BED
(2)求證:AC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長(zhǎng)為( )
A.4
B.3
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到A1與點(diǎn)A2距離之和最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.
(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出此時(shí)方程的根;
(2)是否存在實(shí)數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于136?若存在,請(qǐng)求出滿足條件的m值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4SBOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,使點(diǎn)B,D重合,已知AB=3,AD=4,則 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF= .
上面結(jié)論正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com