【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.

【答案】
(1)證明:∵△ABC是等腰三角形,頂角∠BAC=α(α<60°),線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,

∴AB=AC,

∴∠BAE=∠CAD,

在△ACD和△ABE中,

,

∴△ACD≌△ABE(SAS),

∴BE=CD


(2)證明:∵AD⊥BC,

∴BD=CD,

∴BE=BD=CD,∠BAD=∠CAD,

∴∠BAE=∠BAD,

在△ABD和△ABE中,

,

∴△ABD≌△ABE(SAS),

∴∠EBF=∠DBF,

∵EF∥BC,

∴∠DBF=∠EFB,

∴∠EBF=∠EFB,

∴EB=EF,

∴BD=BE=EF=FD,

∴四邊形BDFE為菱形


【解析】(1)根據(jù)旋轉(zhuǎn)可得∠BAE=∠CAD,從而SAS證明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF∥BC,∠DBF=∠EFB,從而得出∠EBF=∠EFB,則EB=EF,證明得出四邊形BDFE為菱形.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S2;…,依此類推,則Sn可表示為  .(用含n的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=x的圖象如圖所示,它與二次函數(shù)y=ax2﹣4ax+c的圖象交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo)
(2)設(shè)二次函數(shù)圖象的頂點(diǎn)為D.
①若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,且△ACD的面積等于3,求此二次函數(shù)的關(guān)系式;
②若CD=AC,且△ACD的面積等于10,求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣4,8)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.

(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿EF折疊,使點(diǎn)B,D重合,已知AB=3,AD=4,則 ①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=
上面結(jié)論正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案