【題目】如圖,將等腰直角三角板ABC的直角頂點C放在直線l上,從另兩個頂點A、B分別作l的垂線,垂足分別為D、E.
(1)找出圖中的全等三角形,并加以證明;
(2)若DE=a,求直角梯形DABE的面積.
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)AAS定理證明△ADC≌△CEB;
(2)根據(jù)全等三角形的性質得到AD=CE,CD=BE,根據(jù)梯形的面積公式計算即可.
解:(1)△ACD≌△CBE,證明如下:
∵△ABC是等腰直角三角形,C為直角頂點,∴AC=CB
∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°
在Rt△ACD中,∠DAC+∠DCA=90°
∵∠ACB=900,∴∠ECB+∠DCA=90°,
∴∠DAC=∠ECB
在△ACD和△CBE中,
∴△ACD≌△CBE
(2)由(1)知,△ACD≌△CBE,∴AD=CE,CD=BE
∴AD+BE=CE+CD=DE=a,
∴直角梯形DABE的面積=×(AD+BE)×DE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,OD⊥弦BC于點F,且交⊙O于點E,若∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關系,并給出證明;
(2)當AB=10,BC=8時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必須添加一個條件,則下列所添條件不恰當?shù)氖?( ).
A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知分式:
(1)化簡這個分式
(2)把分式A化簡結果的分子與分母同時加上3后得到分式B,問:當a>2時,分式B的值較原來分式A的值是變大了還是變小了?試說明理由。
(3)若A的值是整數(shù),且a也為整數(shù),求出所有符合條件a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側,其圖象與x軸交于點A(﹣1,0)與點C(x2,0),且與y軸交于點B(0,﹣2),小強得到以下結論:①0<a<2;②﹣1<b<0;③c=﹣1;④當|a|=|b|時x2>﹣1;以上結論中正確結論的序號為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標系中的位置如圖所示,根據(jù)圖象回答下列問題:
(1)圖象的另一支在第 象限;在每個象限內(nèi),y隨x的增大而 ;
(2)若此反比例函數(shù)的圖象經(jīng)過點(-2,3),求m的值.點A(-5,2)是否在這個函數(shù)圖象上?點B(-3,4)呢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長線于E,∠1=∠2.
求證:AD平分∠BAC,填寫分析和證明中的空白.
證明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(兩直線平行,內(nèi)錯角相等)
______=______(兩直線平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC是等腰三角形,動點P在斜邊AB所在的直線上,以PC為直角邊作等腰三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點P在線段AB上,且AC=1+,PA=,則:
①線段PB= ,PC= ;
②猜想:PA2,PB2,PQ2三者之間的數(shù)量關系為 ;
(2)如圖②,若點P在AB的延長線上,在(1)中所猜想的結論仍然成立,請你利用圖②給出證明過程;
(3)若動點P滿足,求的值.(提示:請利用備用圖進行探求)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,先描出點,點.
(1)描出點關于軸的對稱點的位置,寫出的坐標 ;
(2)用尺規(guī)在軸上找一點,使的值最。ūA糇鲌D痕跡);
(3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com