【題目】如圖所示,D、E分別是△ABC的邊BC、AC上的點(diǎn),且AB=AC,AD=AE.
(1)若∠BAD=20°,則∠EDC= °.
(2)若∠EDC=20°,則∠BAD= °.
(3)設(shè)∠BAD=α,∠EDC=β,你能由(1)(2)中的結(jié)果找到α、β間所滿(mǎn)足的關(guān)系嗎?請(qǐng)說(shuō)明理由.
【答案】(1)10°;(2)40°;(3)α=2β .
【解析】
問(wèn)題即是弄清∠CDE與∠BAD、∠DAE、∠ADE的大小關(guān)系,通過(guò)等邊對(duì)等角及外角與內(nèi)角的關(guān)系探索求解.
解:(1)∵AB=AC,∴∠B=∠C,
∵AD=AE,∴∠ADE=∠AED,
又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,
∴∠ADE+∠EDC=∠B+∠BAD,
即∠C+∠EDC+∠EDC=∠B+∠BAD,
∴2∠EDC=∠BAD,
∵∠BAD=20°
∴∠EDC=10;
(2) ∵AB=AC,∴∠B=∠C,
∵AD=AE,∴∠ADE=∠AED,
又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,
∴∠ADE+∠EDC=∠B+∠BAD,
即∠C+∠EDC+∠EDC=∠B+∠BAD,
∴2∠EDC=∠BAD,
∵∠EDC=20°
∴∠BAD=40°
(3)設(shè)∠BAD=α,∠EDC=β,則,α=2β.
證明:∵AB=AC,
∴∠B=∠C,
又∵∠ADC=∠BAD+∠B ,
∴∠ADC=∠BAD+∠C……①,
∵AD=AE,
∴∠ADE=∠AED,
∵∠ADC=∠EDC+∠ADE,
∴∠ADC=∠EDC+∠AED,
又∵∠AED=∠EDC+∠C,
∴∠ADC=∠EDC+∠EDC+∠C=2∠EDC+∠C……②,
由①②得:∠BAD+∠C=2∠EDC+∠C,
所以:∠BAD=2∠EDC,
結(jié)論:α=2β.
故答案為(1)10°;(2)40°;(3)α=2β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B為的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( 。
A. B. C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,5)、B(1,0)、C(4,0).
(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1,并寫(xiě)出A1點(diǎn)的坐標(biāo);
(2)在y軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo)及△PAB的周長(zhǎng)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,己知為等腰三角形且面積為,滿(mǎn)足條件的點(diǎn)有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC, ∠C=90°,CD 是AB邊上的高, AC=4cm,BC=3cm,以點(diǎn)C為圓心作⊙C,使A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,則⊙C半徑r范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)a,b,c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點(diǎn)連線(xiàn)(虛線(xiàn))處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.
用含的式子表示橫向甬道的面積;
當(dāng)三條甬道的面積是梯形面積的八分之一時(shí),求甬道的寬;
根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過(guò)米.如果修建甬道的總費(fèi)用(萬(wàn)元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬(wàn)元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)探索發(fā)現(xiàn)
如圖1,在△ABC中,點(diǎn)D在邊BC上,△ABD與△ADC面積分別記為S1和S2,試判斷與的數(shù)量關(guān)系,并說(shuō)明理由.
(2)閱讀分析
小東遇到這樣一個(gè)問(wèn)題:如圖2,在Rt△ABC中,AB=AC,∠BAC=90°,射線(xiàn)AM交BC于點(diǎn)D,點(diǎn)E,F在AM上,且∠CEM=∠BFM=90°,試判斷BF,CE,EF三條線(xiàn)段之間的數(shù)量關(guān)系.
小東利用一對(duì)全等三角形,經(jīng)過(guò)推理使問(wèn)題得以解決.
填空:①圖2中的一對(duì)全等三角形為_________;
②BF,CE,EF三條線(xiàn)段之間的數(shù)量關(guān)系為__________________.
(3)類(lèi)比探究
如圖3,在四邊形ABCD中,AB=AD,AC與BD交于點(diǎn)O,點(diǎn)E、F在射線(xiàn)AC上,且∠BCF=∠DEF=∠BAD.
①判斷BC,DE,CE三條線(xiàn)段之間的數(shù)量關(guān)系,并說(shuō)明理由;
②若OD=3OB,△AED的面積為2,直接寫(xiě)出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在圖中作出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫(xiě)出點(diǎn)P的坐標(biāo);
(3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2,使△A2BC與△ABC關(guān)于直線(xiàn)BC對(duì)稱(chēng),直接寫(xiě)出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com