【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).
(1)求直線的函數(shù)表達(dá)式;
(2)點(diǎn)是線段上的一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(3)如圖2,在(2)的條件下,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)落在點(diǎn)處,連結(jié),求的面積,并直接寫(xiě)出點(diǎn)的坐標(biāo).
【答案】(1);(2);(3),.
【解析】
(1)利用待定系數(shù)法即可解決問(wèn)題;
(2)過(guò)點(diǎn)、分別做軸于點(diǎn),軸于點(diǎn),根據(jù)相似三角形的性質(zhì)得出PM的長(zhǎng),即點(diǎn)P的縱坐標(biāo),代入直線解析式,從而求解;
(3)過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),若求的面積,求出CH的長(zhǎng)即可,根據(jù)旋轉(zhuǎn)120°,得∠CAH=60°,解直角三角形AHC即可得出CH長(zhǎng),從而求解,
解:(1) )∵A(2,0),,
設(shè)直線AB的解析式為y=kx+b,則有 ,
解得:,
∴直線AB的解析式為.
(2)如圖1,過(guò)點(diǎn)、分別做軸于點(diǎn),軸于點(diǎn),即PM∥BN.
∵,
∴AP:AB=2:3,
∴=
∴
將代入解析式可得
,∴
(3)①如圖2,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn).
∵中,由勾股定理得:AP= ,
在中,,
∴
∴;
②過(guò)點(diǎn)H作FE∥x軸,過(guò)點(diǎn)C作CE⊥FE于點(diǎn)E,交x軸于點(diǎn)G,過(guò)點(diǎn)A作AF⊥FE于點(diǎn)F,
Rt△ACH中, AH=,
∵PM∥AF,AM∥HF,根據(jù)直角相等、兩直線平行,同位角相等易證△APM∽△HAF,AP=2,AM=4,PM=2,
∴ ,即 ,
解得:AF=,HF=3,
∵∠AHF+∠CHE=∠AHF +∠FAH=90°,
∴∠CHE=∠FAH,
∵∠HEC=∠AFH=90°,
∴△HEC∽△AFH,
方法同上得:CE=3,HE= ,
由四邊形AFEG是矩形,得AF=GE= ,AG=FH+HE,
∴OG=OA+ FH+HE=2+3+=5+,CG=CE-EG=3-,
即點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點(diǎn),為⊙上不同于、的任意一點(diǎn),連接、,過(guò)點(diǎn)分別作于,于.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為響應(yīng)全民閱讀活動(dòng),利用節(jié)假日面向社會(huì)開(kāi)放學(xué)校圖書(shū)館.據(jù)統(tǒng)計(jì),第一個(gè)月進(jìn)館128人次,進(jìn)館人次逐月增加,到第三個(gè)月進(jìn)館達(dá)到288人次,若進(jìn)館人次的月平均增長(zhǎng)率相同.
(1)求進(jìn)館人次的月平均增長(zhǎng)率;
(2)因條件限制,學(xué)校圖書(shū)館每月接納能力不得超過(guò)500人次,在進(jìn)館人次的月平均增長(zhǎng)率不變的條件下,校圖書(shū)館能否接待第四個(gè)月的進(jìn)館人次,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形一條邊的邊長(zhǎng)為3,它的另兩條邊的邊長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個(gè)根,則k的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中裝有2個(gè)紅球和2個(gè)白球,這些球除顏色外其余都相同,先從袋中摸出1個(gè)球后不放回,再摸出一個(gè)球.
(1)請(qǐng)用樹(shù)狀圖或列表法列舉出兩次摸球可能出現(xiàn)的各種結(jié)果.
(2)求兩次摸到不同顏色的球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某小區(qū)青年對(duì)“高鐵”、“掃碼支付”、“網(wǎng)購(gòu)”和“共享單車”新四大發(fā)明的喜愛(ài)程度,隨機(jī)調(diào)查該小區(qū)一部分青年(每名青年只能選一個(gè)),并將調(diào)查結(jié)果制成如圖所示統(tǒng)計(jì)表與條形統(tǒng)計(jì)圖.
青年最喜愛(ài)的新四大發(fā)明人數(shù)統(tǒng)計(jì)表
節(jié)目 | 人數(shù)(名) | 百分比 |
共享單車 | 5 | |
掃碼支付 | 15 | |
網(wǎng)購(gòu) | ||
高鐵 | 10 |
青年最喜愛(ài)的新四大發(fā)明人數(shù)條形統(tǒng)計(jì)圖
(1)計(jì)算的值 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在被調(diào)查喜愛(ài)“共享單車”青年中,小明一周內(nèi)使用共享單車的次數(shù)分別為:1,3,5,12,,若整數(shù)是這組數(shù)據(jù)的中位數(shù),直接寫(xiě)出該組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具公司生產(chǎn)一種電子玩具,每只玩具的生產(chǎn)成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)只)與銷售單價(jià)x(元)之間的關(guān)系可以近似的看作一次函數(shù)y=2x+100,設(shè)每月銷售這種玩具的利潤(rùn)為w(萬(wàn)元).
(1)寫(xiě)出w與x之間的函數(shù)表達(dá)式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),公司每月獲得的利潤(rùn)為440萬(wàn)元?
(3)如果公司每月的生產(chǎn)成本不超過(guò)540萬(wàn)元,那么當(dāng)銷售單價(jià)為多少元時(shí),公司每月獲得的利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=2cm,動(dòng)點(diǎn)M自點(diǎn)A出發(fā)沿A→B的方向,以每秒1cm的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N自點(diǎn)A出發(fā)沿A→D→C的方向以每秒2cm的速度運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(秒),△AMN的面積為y(cm2),則下列圖象中能反映y與x之間的函數(shù)關(guān)系的是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com