【題目】如圖,直線軸,軸分別交于點(diǎn),點(diǎn),上的一點(diǎn),若將沿折疊,使點(diǎn)恰好落在軸上的點(diǎn)處,則直線的表達(dá)式是_________

【答案】y=x+3.

【解析】

由直線即可得到A(-60),B(0,8),再根據(jù)勾股定理即可得到P(0,3),利用待定系數(shù)法即可得到直線AP的表達(dá)式.

,則,令,則,

由直線軸,軸交點(diǎn)坐標(biāo)為:A(-60)B(0,8),

AO=6,BO=8
,
由折疊可得AB'=AB=10B'P=BP,
OB'= AB'- AO ,
設(shè)P(0,),則OP=yB'P=BP=,
RtPOB'中,PO2+B'O2=B'P2,
y2+42=()2
解得:,
P(0,3)
設(shè)直線AP的表達(dá)式為,

,

∴直線AP的表達(dá)式是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C90°ACBC,D、E分別在ACBC上,若∠DBC2BAE,AB4,CD,則CE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2;以此進(jìn)行下去,則正方形A2019B2019C2019D2019的面積為( 。

A.52017B.52018C.52019D.52020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DE,F分別是AB,BC,CA的中點(diǎn),AP是邊BC上的高

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:∠DEF=DPF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過(guò)點(diǎn)C和點(diǎn)E,過(guò)點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

(2)求直線BF的解析式;

(3)直接寫出y1>y2時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).

(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來(lái)的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;

(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):

A′   ,B′   ,C′   ;

(3)(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小龍?jiān)谌kS機(jī)抽取了一部分同學(xué)就“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項(xiàng)).下面是他通過(guò)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:

(1)小龍一共抽取了   名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)求“其他”部分對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BACBC于點(diǎn)D,AE⊥BC,垂足為E,且CF∥AD.

(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE=   度;

(2)若圖1中的∠B=x,∠ACB=y,則∠CFE=   ;(用含x、y的代數(shù)式表示)

(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案