【題目】如果點P(2x+6,x-4)在平面直角坐標系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

【答案】C

【解析】

試題根據(jù)平面直角坐標系中各象限點的特征,判斷其所在象限,四個象限的符號特征分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)。因此,

由點P(2x+6,x-4)在平面直角坐標系的第四象限內(nèi),得。

解一元一次不等式組,先求出不等式組中每一個不等式的解集,再利用口訣求出這些解集的公共部分:同大取大,同小取小,大小小大中間找,大大小小解不了(無解)。因此,

不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個。在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示。故選C。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】每年的65日為世界環(huán)保日,為提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新機器,現(xiàn)有甲、乙兩種型號的機器可選,其中每臺的價格、產(chǎn)量如下表:

甲型機器

乙型機器

價格(萬元/臺)

a

b

產(chǎn)量(噸/月)

240

180

經(jīng)調(diào)查:購買一臺甲型機器比購買一臺乙型機器多12萬元,購買2臺甲型機器比購買3臺乙型機器多6萬元.

(1) a、b的值;

(2) 若該公司購買新機器的資金不超過216萬元,請問該公司有哪幾種購買方案?

(3) 在(2)的條件下,若公司要求每月的產(chǎn)量不低于1890噸,請你為該公司設計一 種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,平分于點,點、分別是的中點,連接,且.

(1) 求證:;

(2)連接,若,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B,C的坐標分別為(a0),(2,﹣4),(c0),且ac滿足方程為二元一次方程.

1)求A,C的坐標.

2)若點Dy軸正半軸上的一個動點.

①如圖1,∠AOD+ADO+DAO180°,當ADBC時,∠ADO與∠ACB的平分線交于點P,求∠P的度數(shù);

②如圖2,連接BD,交x軸于點E.若SADE≤SBCE成立.設動點D的坐標為(0,d),求d的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共180件,其進價和售價如表:(注:獲利=售價-進價)

進價(元/件)

14

35

售價(元/件)

20

43

1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EFAM,垂足為F,交AD的延長線于點E,交DC于點N

(1)求證:△ABM ∽△EFA

(2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當x30,求y與x之間的函數(shù)關系式;

(2)若小李4月份上網(wǎng)20小時,他應付多少元的上網(wǎng)費用?

(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知,點、分別是直線、上的兩點.將射線繞點順時針勻速旋轉(zhuǎn),將射線繞點順時針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為、,已知射線、射線旋轉(zhuǎn)的速度之和為6/.

1)射線先轉(zhuǎn)動得到射線,然后射線、再同時旋轉(zhuǎn)10秒,此時射線與射線第一次出現(xiàn)平行.求射線、的旋轉(zhuǎn)速度;

2)若射線分別以(1)中速度同時轉(zhuǎn)動秒,在射線與射線重合之前,設射線與射線交于點,過點于點,設,如圖2所示.

①當時,求、滿足的數(shù)量關系;

②當時,求滿足的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖:

(1)如圖甲,以點O為中心,把點P順時針旋轉(zhuǎn)45°;

(2)如圖乙,以點O為中心,把線段AB逆時針旋轉(zhuǎn)90°;

(3)如圖丙,以點O為中心,把ABC順時針旋轉(zhuǎn)120°;

(4)如圖丁,以點B為中心,把ABC旋轉(zhuǎn)180°.

查看答案和解析>>

同步練習冊答案