【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P、Q 是反比例函數(shù)(x>0)圖象上的兩點(diǎn),過點(diǎn) P、Q 分別作直線且與 x、y 軸分別交于點(diǎn) A、B和點(diǎn) M、N.已知點(diǎn) P 為線段 AB 的中點(diǎn).
(1)求△AOB 的面積(結(jié)果用含 a 的代數(shù)式表示);
(2)當(dāng)點(diǎn) Q 為線段 MN 的中點(diǎn)時(shí),小菲同學(xué)連結(jié) AN,MB 后發(fā)現(xiàn)此時(shí)直線 AN 與直線MB 平行,問小菲同學(xué)發(fā)現(xiàn)的結(jié)論正確嗎?為什么?
【答案】(1)S=2a+2;(2)正確,理由見解析
【解析】
(1)過點(diǎn)P作PP⊥x軸,PP ⊥y軸,由P為線段AB的中點(diǎn),可知PP,PP是△AOB的中位線,故OA=2PP,OB=2PP,再由點(diǎn)P是反比例函數(shù)y=(x>0)圖象上的點(diǎn),可知S = OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)由點(diǎn)Q為線段MN的中點(diǎn),可知同(1)可得S=S =2a+2,故可得出OAOB=OMON,即 ,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出結(jié)論.
(1)過點(diǎn)P作PP⊥x軸,PP⊥y軸,
∵P為線段AB的中點(diǎn),
∴PP,PP是△AOB的中位線,
∴OA=2PP,OB=2PP,
∵點(diǎn)P是反比例函數(shù)y= (x>0)圖象上的點(diǎn),
∴S =OA×OB=×2PP×2PP=2PP×PP=2a+2;
(2)結(jié)論正確.
理由:∵點(diǎn)Q為線段MN的中點(diǎn),
∴同(1)可得S=S =2a+2,
∴OAOB=OMON,
∴,
∵∠AON=∠MOB,
∴△AON∽△MOB,
∴∠OAN=∠OMB,
∴AN∥MB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠AOE=2∠EOC.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=36°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為AC邊上的一點(diǎn),DG∥AB,延長AB到E,使BE=GD,連接DE交BC于F.
(1)求證:GF=BF;
(2)若△ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+b2﹣6b+9=0,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OE⊥CD,且∠BOD的度數(shù)是∠AOD的5倍.
求:(1)∠AOD、∠BOD的度數(shù);(2)∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市要銷售一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大,并求出最大的利潤;
(2)經(jīng)過試營銷后,超市按(1)中單價(jià)銷售,為了回饋廣大顧客,同時(shí)提高該文具知名度,超市決定在1月1日當(dāng)天開展降價(jià)促銷活動(dòng),若每件文具降價(jià)2a%,則可多售出4a%,結(jié)果當(dāng)天銷售額為5670元,要使銷量盡可能地大,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD沿EF對折,使點(diǎn)A落在點(diǎn)C處,若∠A=60°,AD=6,AB=12,則AE的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為AB邊上一點(diǎn),將△AED沿直線DE翻折,點(diǎn)A落在點(diǎn)P處,且DP⊥BC,垂足為F.
(1)求∠EDP的度數(shù).
(2)過D點(diǎn)作DG⊥DC交AB于G點(diǎn),且AG=FC,
求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長線方向運(yùn)動(dòng)(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長;
(2)當(dāng)運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com