【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點(diǎn)為G.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過(guò)程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).
【答案】(1)EB=FD;(2)EB=FD,證明見(jiàn)解析;(3)不變,∠EGD=60°
【解析】試題分析:(1)EB=FD,利用正方形的性質(zhì)、等邊三角形的性質(zhì)和全等三角形的證明方法可證明△AFD≌△ABE,由全等三角形的性質(zhì)即可得到EB=FD;
(2)當(dāng)四邊形ABCD為矩形時(shí),EB和FD仍舊相等,證明的思路同(1);
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過(guò)程中,∠EGD不發(fā)生變化,是一定值,為60°.
試題解析:
(1)EB=FD,
理由如下:
∵四邊形ABCD為正方形,
∴AB=AD,
∵以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,
∴AF=AE,∠FAB=∠EAD=60°,
∵∠FAD=∠BAD+∠FAB=90°+60°=150°,
∠BAE=∠BAD+∠EAD=90°+60°=150°,
∴∠FAD=∠BAE,
在△AFD和△ABE中,
,
∴△AFD≌△ABE,
∴EB=FD;
(2)EB=FD.
證:∵△AFB為等邊三角形
∴AF=AB,∠FAB=60°
∵△ADE為等邊三角形,
∴AD=AE,∠EAD=60°
∴∠FAB+∠BAD=∠EAD+∠BAD,
即∠FAD=∠BAE
∴△FAD≌△BAE
∴EB=FD;
(3)解:
同(2)易證:△FAD≌△BAE,
∴∠AEB=∠ADF,
設(shè)∠AEB為x°,則∠ADF也為x°
于是有∠BED為(60﹣x)°,∠EDF為(60+x)°,
∴∠EGD=180°﹣∠BED﹣∠EDF
=180°﹣(60﹣x)°﹣(60+x)°
=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在一張長(zhǎng)方形紙條上畫(huà)一條數(shù)軸.
(1)折疊紙條使數(shù)軸上表示的點(diǎn)與表示5的點(diǎn)重合,折痕與數(shù)軸的交點(diǎn)表示的數(shù)是 ;
(2)如果數(shù)軸上兩點(diǎn)之間的距離為8,經(jīng)過(guò)(1)的折疊方式能夠重合,那么左邊這個(gè)點(diǎn)表示的數(shù)是 ;
(3)如圖2,點(diǎn)A、B表示的數(shù)分別是、,數(shù)軸上有點(diǎn)C,使得AC=2BC,那么點(diǎn)C表示的數(shù)是 ;
(4)如圖2,若將此紙條沿A、B兩處剪開(kāi),將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折次后,再將其展開(kāi),求最左端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(,)、B′(,)、C′(,).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明早晨跑步,他從自家向東跑了2千米到達(dá)小彬家,繼續(xù)向東跑了1.5千米到達(dá)小紅家,然后向西跑了4.5千米到達(dá)中心廣場(chǎng),最后回到家.
(1)以小明家為原點(diǎn),以向東的方向?yàn)檎较,?/span>1 個(gè)單位長(zhǎng)度表示1千米,你能在數(shù)軸上表示出中心廣場(chǎng),小彬家和小紅家的位置嗎?
(2)小彬家距中心廣場(chǎng)多遠(yuǎn)?
(3)小明一共跑了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一次函數(shù)y=kx+b的圖象,以下說(shuō)法中正確的是( )
A. 直線與y軸的交點(diǎn)為(3,0) B. y隨x的增大而增大
C. 直線與兩坐標(biāo)軸圍成的三角形面積是6 D. 一元一次方程kx+b=0的解為x=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(2,0)和B(t,0)(t≥2),與y軸交于點(diǎn)C,直線l:y=x+2t經(jīng)過(guò)點(diǎn)C,交x軸于點(diǎn)D,直線AE交拋物線于點(diǎn)E,且有∠CAE=∠CDO,作CF⊥AE于點(diǎn)F.
(1)求∠CDO的度數(shù);
(2)求出點(diǎn)F坐標(biāo)的表達(dá)式(用含t的代數(shù)式表示);
(3)當(dāng)S△COD﹣S四邊形COAF=7時(shí),求拋物線解析式;
(4)當(dāng)以B,C,O三點(diǎn)為頂點(diǎn)的三角形與△CEF相似時(shí),請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為5的正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A,C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AG交于點(diǎn)P.
(1)求證:CE=EP.
(2)若點(diǎn)E的坐標(biāo)為(3,0),在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F是平行四邊形ABCD對(duì)角線AC上兩點(diǎn),AE=CF.
證明(1)△ABE≌△CDF;
(2)BE∥DF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com