【題目】如圖,邊長為5的正方形OABC的頂點O在坐標原點處,點A,C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AG交于點P.
(1)求證:CE=EP.
(2)若點E的坐標為(3,0),在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,求出點M的坐標;若不存在,說明理由.
【答案】(1)證明見解析;(2)存在點M的坐標為(0,2).
【解析】(1)在OC上截取OK=OE.連接EK,求出∠KCE=∠CEA,根據(jù)ASA推出△CKE≌△EAP,根據(jù)全等三角形的性質(zhì)得出即可;
(2)過點B作BM∥PE交y軸于點M,根據(jù)ASA推出△BCM≌△COE,根據(jù)全等三角形的性質(zhì)得出BM=CE,求出BM=EP.根據(jù)平行四邊形的判定得出四邊形BMEP是平行四邊形,即可求出答案.
(1)在OC上截取OK=OE.連接EK,如圖1.
∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.
∵AP為正方形OCBA的外角平分線,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA.
∵EC⊥EP,∴∠CEF=∠COE=90°,
∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.
在△CKE和△EAP中,∵ ,
∴△CKE≌△EAP,∴EC=EP;
(2)y軸上存在點M,使得四邊形BMEP是平行四邊形.
如圖,過點B作BM∥PE交y軸于點M,連接BP,EM,如圖2,
則∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.
在△BCM和△COE中,∵,
∴△BCM≌△COE,∴BM=CE.
∵CE=EP,∴BM=EP.
∵BM∥EP,∴四邊形BMEP是平行四邊形.
∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.
故點M的坐標為(0,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點E為AH的中點,點F為GH的中點,連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點為G.
(1)當四邊形ABCD為正方形時(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當四邊形ABCD為矩形時(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請說明理由;如果不變,請在圖3中求出∠EGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點H.
(1)如圖,①在圖中找出與∠DBA相等的角,并說明理由;
②若∠BAC=100°,求∠DHE的度數(shù);
(2)若△ABC中,∠A=50°,直接寫出∠DHE的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點P是的邊OB上的一點.
(1)過點P畫OB的垂線,交OA于點C;過點P畫OA的垂線,垂足為H;
(2)線段PH的長度是點P到直線__________的距離;
(3)線段__________的長度是點C到直線OB的距離;
(4)線段PC、PH、OC這三條線段大小關(guān)系是__________(用“<”號連接).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交BC于點G.則BG的長為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)單項式﹣2x3ym與5xn+1y的差是一個單項式,求的值;
(2)化簡求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應的數(shù)為﹣20,B點對應的數(shù)為100.
(1)請寫出與A,B兩點距離相等的點M所對應的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).
(3)若當電子螞蟻P從B點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com