【題目】如圖1,在一張長方形紙條上畫一條數(shù)軸.

(1)折疊紙條使數(shù)軸上表示的點與表示5的點重合,折痕與數(shù)軸的交點表示的數(shù)是

(2)如果數(shù)軸上兩點之間的距離為8,經(jīng)過(1)的折疊方式能夠重合,那么左邊這個點表示的數(shù)是 ;

(3)如圖2,點AB表示的數(shù)分別是、,數(shù)軸上有點C,使得AC=2BC,那么點C表示的數(shù)是

(4)如圖2,若將此紙條沿AB兩處剪開,將中間的一段紙條對折,使其左右兩端重合,這樣連續(xù)對折次后,再將其展開,求最左端的折痕與數(shù)軸的交點表示的數(shù).(用含的代數(shù)式表示)

【答案】(1)2;(2); (3)2或10;(4).

【解析】

1)找出5表示的點與﹣1表示的點組成線段的中點表示數(shù),然后結(jié)合數(shù)軸即可求得答案

22平分兩個點組成的線段,得到左邊的點為2-距離的一半,從而可求得答案

3設(shè)點C表示的數(shù)為x,分三種情況討論①點CA的左側(cè),②點CAB之間③點CB的右側(cè)

4先求出每兩條相鄰折痕的距離,進一步得到最左端的折痕和最右端的折痕與數(shù)軸的交點表示的數(shù),即可求得答案

1)(﹣1+5÷2=4÷2=2

故折痕與數(shù)軸的交點表示的數(shù)為2

228÷2=24=-2;

3)設(shè)點C表示的數(shù)為x,分三種情況討論

①點CA的左側(cè)此時ACBC,AC=2BC矛盾,此種情況不成立;

②點CAB之間,此時x+2=2(4x),解得x=2;

③點CB的右側(cè)此時x+2=2(x4),解得x=10

綜上所述C表示的數(shù)是210

4∵對折n次后每兩條相鄰折痕的距離為=,∴最左端的折痕與數(shù)軸的交點表示的數(shù)是﹣2+

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1是某城市四月份18日的日最高氣溫隨時間變化的折線統(tǒng)計圖,小剛根據(jù)圖1將數(shù)據(jù)統(tǒng)計整理后制成了圖2

根據(jù)圖中信息,解答下列問題:

1)將圖2補充完整;

2)這8天的日最高氣溫的中位數(shù)是 C;

3)計算這8天的日最高氣溫的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】谷歌人工智能AlphaGo機器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學習的月收費方式:

設(shè)小明每月上網(wǎng)學習人工智能課程的時間為x小時,方案A,B的收費金額分別為yA元、yB元.

(1)x≥50時,分別求出yA、yBx之間的函數(shù)表達式;

(2)若小明3月份上該網(wǎng)站學習的時間為60小時,則他選擇哪種方式上網(wǎng)學習合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與解不等式組
(1)計算:|﹣2 |﹣4sin45°+(3﹣π)°﹣( 2
(2)解不等式組: ,并在數(shù)軸上表示它的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列從左到右的變形,是因式分解的是(

A. m2-1=(m+1)(m-1) B. 2(a-b)=2a-2b C. x2-2x+1=x(x-2)+1, D. a(a-b)(b+1)=(a2 -ab)(b+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a<0,c>0)與x軸交于A,B兩點,與y軸交于點C,其對稱軸l為x=﹣1,直線y=kx+m經(jīng)過A,C兩點,與拋物線的對稱軸l交于點D,且AD=2CD,連接BC,BD.

(1)求A,B兩點的坐標;
(2)求證:a=﹣k;
(3)若△BCD是直角三角形,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形紙片ABCD的邊長為4,將該正方形紙片沿EF折疊(E,F(xiàn)分別在AB,CD邊上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD交于點P.

(1)如圖①,連接PE,若M是AD邊的中點.
①寫出圖中與△PMD相似的三角形.
②求△PMD的周長.
(2)如圖②,隨著落點M在AD邊上移動(點M不與A、D重合),△PDM的周長是否發(fā)生變化?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點EAH的中點,點FGH的中點,連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以四邊形ABCD的邊ABAD為邊分別向外側(cè)作等邊三角形ABFADE,連接EB、FD,交點為G

(1)當四邊形ABCD為正方形時(如圖1),EBFD的數(shù)量關(guān)系是   ;

(2)當四邊形ABCD為矩形時(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請說明理由;如果不變,請在圖3中求出∠EGD的度數(shù).

查看答案和解析>>

同步練習冊答案