【題目】已知,在△ABC和△ADE中,ABAC,ADAE,∠BAC=∠DAE,過點EEFBC交直線AB于點F,連接CF

(1)如圖1,點DBC上,ABDE交于點G,連接BE.求證:四邊形DCFE是平行四邊形;

(2)如圖2,點DBC的延長線上,若四邊形CDEF是矩形,AC=7,BC=4,求AE的長.

【答案】(1)見解析;(2).

【解析】

(1)SAS證明△ACD≌△ABE得出CDBE,∠ACD=∠ABE,由平行線的性質(zhì)得出∠ABC=∠EFB,得出∠ABE=∠EFB,證出EBEF,得出EFCD,即可得出結(jié)論;

(2)證出∠ACF=∠AFC,得出AFAC7BF7+714,由勾股定理得出CFDE6,證明△ABC∽△ADE,利用相似三角形的對應(yīng)邊成比例得出比例式即可求得答案.

(1)∵∠BAC=∠DAE,

∴∠DAC=∠EAB,

ACDABE中,

,

∴△ACD≌△ABE(SAS),

CDBE,∠ACD=∠ABE,

EFBC,

∴∠ABC=∠EFB,

∴∠ABE=∠EFB,

EBEF

EFCD,

EFBC,

∴四邊形EDCF是平行四邊形;

(2)∵四邊形CDEF為矩形,

∴∠BCF90°,

ABAC

∴∠B=∠ACB

∴∠ACF=∠AFC,

AFAC7,BF7+714

DECF,

ABACADAE,

,

∵∠BAC=∠DAE,

∴△ABC∽△ADE,

,

解得:AE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在⊙O上,過點D的切線交直徑AB的延長線于點PDCAB于點C

1)求證:DB平分∠PDC;

2)如果DC = 6,,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年南充市有縣區(qū)申報了長壽之鄉(xiāng),并獲認定.上月某中學(xué)九(1)班學(xué)生社會實踐前往該區(qū)一鄉(xiāng)鎮(zhèn)調(diào)研進入老齡化社會的數(shù)據(jù).按國際通行標準,當一個國家或地區(qū)6060歲以上人口達到人口總數(shù)的10%,或6565歲以上人口達到人口總數(shù)的7%,這個區(qū)域進入老齡化社會.被調(diào)查的800人年齡情況統(tǒng)計圖如下:

1)該鄉(xiāng)鎮(zhèn)是否進入老齡化社會?并說明理由.

2)請你為該鄉(xiāng)鎮(zhèn)提一條合理化建議.

3)在該鄉(xiāng)鎮(zhèn)60歲及以上人群中隨機抽取1人,求年齡不低于70歲的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,.分別以,所在直線為軸,軸,建立如圖所示的平面直角坐標系.是邊的中點,過點的反比例函數(shù)的圖象與邊交于點.

1)求的值及點的坐標;

2)問在軸上是否存在點,使得的值最小,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(3,3)、B(﹣1,0)、C(4,0).

(1)經(jīng)過平移,可使△ABC的頂點A與坐標原點O重合,則點C的對應(yīng)點C1的坐標為   ;(不用畫圖)

(2)在圖中畫出將△ABC繞點B逆時針旋轉(zhuǎn)90°得到的△ABC′;

(3)以點A為位似中心放大△ABC,得到△AB2C2,使SABCS=1:4,在圖中畫出△AB2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為表彰在書香校園活動中表現(xiàn)積極的同學(xué),決定購買筆記本和鋼筆作為獎品.已知5個筆記本、2支鋼筆共需要100元;4個筆記本、7支鋼筆共需要161

(1)筆記本和鋼筆的單價各多少元?

(2)恰好五一,商店舉行優(yōu)惠促銷活動,具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買x個筆記本需要y1元,買x支鋼筆需要y2元;求y1、y2關(guān)于x的函數(shù)解析式;

(3)若購買同一種獎品,并且該獎品的數(shù)量超過10件,請你分析買哪種獎品省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明利用所學(xué)數(shù)學(xué)知識測量某建筑物BC高度,采用了如下的方法:小明從與某建筑物底端B在同一水平線上的A點出發(fā),先沿斜坡AD行走260米至坡頂D處,再從D處沿水平方向繼續(xù)前行若干米后至點E處,在E點測得該建筑物頂端C的仰角為72°,建筑物底端B的俯角為63°,其中點A、B、C、D、E在同一平面內(nèi),斜坡AD的坡度i=12.4,根據(jù)小明的測量數(shù)據(jù),計算得出建筑物BC的高度約為( )米(計算結(jié)果精DE確到0.1米,參考數(shù)據(jù):sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96

A.157.1 B.157.4 C.257.4 D.257.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,AB6,BC11,∠ACB30°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1

(1)如圖1,當點C1在線段CA上時,∠CC1A1_____°;

(2)如圖2,連接AA1,CC1.若△ABA1的面積為24,求△CBC1的面積;

(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是P1,求在旋轉(zhuǎn)過程中,線段EP1長度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用36萬元購進A、B兩種商品,銷售完后共獲利6萬元,其進價和售價如下表:


A

B

進價(/)

1200

1000

售價(/)

1380

1200

(注:獲利=售價-進價)

(1) 該商場購進AB兩種商品各多少件?

(2) 商場第二次以原進價購進A、B兩種商品.購進B種商品的件數(shù)不變,而購進A種商品的件數(shù)是第一次的2倍,A種商品按原價出售,而B種商品打折銷售.若兩種商品銷售完畢,要使第二次經(jīng)營活動獲利不少于81600元,B種商品最低售價為每件多少元?

查看答案和解析>>

同步練習(xí)冊答案