【題目】方程x2﹣kx+k﹣2=0有兩個實(shí)數(shù)根x1,x2,且0<x1<1,2<x2<3,求k的取值范圍.
【答案】2<k<3.5.
【解析】
由于方程x2-kx+k-2=0有兩個實(shí)數(shù)根x1,x2,且0<x1<1,2<x2<3,根據(jù)一元二次方程與二次函數(shù)的關(guān)系可畫出二次函數(shù)y=x2-kx+k-2的圖象,根據(jù)圖象得到當(dāng)x=0,y=k-2>0;當(dāng)x=1,y=1-k+k-2<0;當(dāng)x=2,y=4-2k+k-2<0;當(dāng)x=3,y=9-3k+k-2>0,求出幾個不等式解的公共部分即可得到k的取值范圍.
∵方程x2-kx+k-2=0有兩個實(shí)數(shù)根x1,x2,且0<x1<1,2<x2<3,
∴二次函數(shù)y=x2-kx+k-2如圖所示,
∴x=0,y=k-2>0;x=1,y=1-k+k-2<0;x=2,y=4-2k+k-2<0;x=3,y=9-3k+k-2>0,
而△=k2-4(k-2)=(k-2)2+4>0,
∴2<k<3.5,
即k的取值范圍為2<k<3.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形按如圖所示的方式放置,點(diǎn).和. 分別在直線和x軸上,已知點(diǎn),則Bn的坐標(biāo)是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB<BC,點(diǎn)E為對角線AC上的一個動點(diǎn),連接BE,DE,過E作EF⊥BC于F.設(shè)AE=x,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的( )
A.線段BEB.線段EFC.線段CED.線段DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,點(diǎn)分別在邊上,,連接、,點(diǎn)為的中點(diǎn).
(1)觀察猜想
圖1中,線段與的數(shù)量關(guān)系是______,位置關(guān)系是________;
(2)探究證明
把繞點(diǎn)逆時針方向旋轉(zhuǎn)到圖2的位置,小航猜想(1)中的結(jié)論仍然成立,請你證明小航的猜想;
(3)拓展延伸
把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CD邊F處,連接AF,在AF上取點(diǎn)O,以O為圓心,OF長為半徑作⊙O與AD相切于點(diǎn)P.若AB=6,BC=3,則下列結(jié)論:①F是CD的中點(diǎn);②⊙O的半徑是2;③AE=CE;④S陰影=.其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:(一)如果兩個函數(shù)y1,y2,存在x取同一個值,使得y1=y2,那么稱y1,y2為“合作函數(shù)”,稱對應(yīng)x的值為y1,y2的“合作點(diǎn)”;
(二)如果兩個函數(shù)為y1,y2為“合作函數(shù)”,那么y1+y2的最大值稱為y1,y2的“共贏值”.
(1)判斷函數(shù)y=x+2m與y=是否為“合作函數(shù)”,如果是,請求出m=1時它們的合作點(diǎn);如果不是,請說明理由;
(2)判斷函數(shù)y=x+2m與y=3x﹣1(|x|≤2)是否為“合作函數(shù)”,如果是,請求出合作點(diǎn);如果不是,請說明理由;
(3)已知函數(shù)y=x+2m與y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函數(shù)”,且有唯一合作點(diǎn).
①求出m的取值范圍;
②若它們的“共贏值”為24,試求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD交于點(diǎn)O,若增加一個條件,使ABCD成為菱形,下列給出的條件正確的是( )
A. AB=AD B. AC=BD C. ∠ABC=90° D. ∠ABC=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)且)中,當(dāng)時,;當(dāng)時,.請對該函數(shù)及其圖像進(jìn)行如下探究:
(1)求該函數(shù)的解析式,并直接寫出該函數(shù)自變量的取值范圍:
(2)請?jiān)谙铝兄苯亲鴺?biāo)系中畫出該函數(shù)的圖像:
列表如下:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … | ||
y | … | … |
描點(diǎn)連線:
(3)請結(jié)合所畫函數(shù)圖象,寫出函數(shù)圖象的兩條性質(zhì)
(4)請你在上方直角坐標(biāo)系中畫出函數(shù)的圖像,結(jié)合上述函數(shù)的圖像,寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com