【題目】為適應(yīng)日益激烈的市場(chǎng)競(jìng)爭(zhēng)要求,某工廠從2016年1月且開(kāi)始限產(chǎn),并對(duì)生產(chǎn)線(xiàn)進(jìn)行為期5個(gè)月的升降改造,改造期間的月利潤(rùn)與時(shí)間成反比例;到5月底開(kāi)始恢復(fù)全面生產(chǎn)后,工廠每月的利潤(rùn)都比前一個(gè)月增加10萬(wàn)元.設(shè)2016年1月為第1個(gè)月,第x個(gè)月的利潤(rùn)為y萬(wàn)元,其圖象如圖所示,試解決下列問(wèn)題:
(1)分別求該工廠對(duì)生產(chǎn)線(xiàn)進(jìn)行升級(jí)改造前后,y與x之間的函數(shù)關(guān)系式;
(2)到第幾個(gè)月時(shí),該工廠月利潤(rùn)才能再次達(dá)到100萬(wàn)元?
(3)當(dāng)月利潤(rùn)少于50萬(wàn)元時(shí),為該工廠的資金緊張期,問(wèn)該工廠資金緊張期共有幾個(gè)月?

【答案】
(1)解:由題意得,設(shè)前5個(gè)月中y與x的還是關(guān)系式為y= ,把x=1,y=3代入得,k=100,

∴y與x之間的函數(shù)關(guān)系式為y= ,

把x=5代入得y= =20,

由題意設(shè)5月份以后y與x的函數(shù)關(guān)系式為y=10x+b,

把x=5,y=20代入得,20=10×5+b,

∴b=﹣30,

∴y與x之間的函數(shù)關(guān)系式為y=10x﹣30


(2)解:由題意得,把y=100代入y=10x﹣30得100=10x﹣30,解得:x=13,

∴到第13個(gè)月時(shí),該工廠月利潤(rùn)才能再次達(dá)到100萬(wàn)元


(3)解:對(duì)于y= ,y=50時(shí),x=2,

∵k=100>0,y隨x的增大而減小,∴x<2時(shí),y<50,對(duì)于y=10x﹣30,當(dāng)y=50時(shí),x=8,

∵k=10>0,y隨x的增大而增大,∴x<8時(shí),y<50,∴2<x<8時(shí),月利潤(rùn)少于50萬(wàn)元,∴該工廠資金緊張期共有5個(gè)月


【解析】(1)根據(jù)題意列方程即可得到函數(shù)解析式;(2)把y=100代入y=10x﹣30即可得到結(jié)論;(3)對(duì)于y= ,y=50時(shí),得到x=2,得到x<2時(shí),y<50,對(duì)于y=10x﹣30,當(dāng)y=50時(shí),得到x=8,于是得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠MON=40°,OE平分∠MONA,B,C分別是射線(xiàn)OM,OEON上的動(dòng)點(diǎn)(A,BC不與點(diǎn)O 重合),連接AC交射線(xiàn)OE于點(diǎn)D.設(shè)∠OACx°.

(1)如圖①,若ABON,則

①∠ABO的度數(shù)是________.

②當(dāng)∠BAD=∠ABD時(shí),x=________;當(dāng)∠BAD=∠BDA時(shí),x=________.

(2)如圖②,若ABOM,則是否存在這樣的x值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別BC,CD邊上的一點(diǎn),且BE2EC,FCDC,連接AEAF,EF,求證:△AEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線(xiàn)上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線(xiàn)上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )

A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的視力情況,隨機(jī)抽樣調(diào)查了部分九年級(jí)學(xué)生的視力,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

分組

視力

人數(shù)

A

3.95x4.25

3

B

4.25x4.55

   

C

4.55x4.85

18

D

4.85x5.15

8

E

5.15x5.45

   

根據(jù)以上信息,解谷下列問(wèn)題:

1)在被調(diào)查學(xué)生中,視力在3.95x4.25范圍內(nèi)的人數(shù)為   人;

2)本次調(diào)查的樣本容量是   ,視力在5.15x5.45范圍內(nèi)學(xué)生數(shù)占被調(diào)查學(xué)生數(shù)的百分比是   %;

3)在統(tǒng)計(jì)圖中,C組對(duì)應(yīng)扇形的圓心角度數(shù)為   °;

4)若該校九年級(jí)有400名學(xué)生,估計(jì)視力超過(guò)4.85的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究同一平面直角坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質(zhì).
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= x與y= ,當(dāng)k>0時(shí)的圖象性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程:

(1)如圖所示,設(shè)函數(shù)y= x與y= 圖象的交點(diǎn)為A,B,已知A點(diǎn)的坐標(biāo)為(﹣k,﹣1),則B點(diǎn)的坐標(biāo)為;
(2)若點(diǎn)P為第一象限內(nèi)雙曲線(xiàn)上不同于點(diǎn)B的任意一點(diǎn).
①設(shè)直線(xiàn)PA交x軸于點(diǎn)M,直線(xiàn)PB交x軸于點(diǎn)N.求證:PM=PN.
證明過(guò)程如下,設(shè)P(m, ),直線(xiàn)PA的解析式為y=ax+b(a≠0).
,
解得
∴直線(xiàn)PA的解析式為
請(qǐng)你把上面的解答過(guò)程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點(diǎn)坐標(biāo)為(1,k)(k≠1)時(shí),判斷△PAB的形狀,并用k表示出△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC中,點(diǎn)DBC邊上,點(diǎn)EAC的延長(zhǎng)線(xiàn)上,DE=DA(如圖1)

(1)求證:∠BAD=EDC;

(2)若點(diǎn)E關(guān)于直線(xiàn)BC的對(duì)稱(chēng)點(diǎn)為M(如圖2),連接DM,AM.求證:DA=AM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCDBC中,A=40°,AB=AC=2,BDC=140°BD=CD,以點(diǎn)D為頂點(diǎn)作MDN=70°,兩邊分別交AB,AC于點(diǎn)M,N,連接MN,則AMN的周長(zhǎng)為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案