【題目】如圖,在ABC中,點(diǎn)DBC邊上,DE垂直平分AC邊,垂足為點(diǎn)E,若∠B=70°,且AB+BD=BC,則∠BAC的度數(shù)是( )

A.65°B.70°C.75°D.80°

【答案】C

【解析】

連接AD,根據(jù)線段垂直平分線的性質(zhì)可得DA=DC,進(jìn)而可得∠C=DAC,進(jìn)一步即可由已知AB+BD=BC推得AB=AD,可得∠B=ADB,然后利用三角形的外角性質(zhì)可求出∠C的度數(shù),再利用三角形的內(nèi)角和即可求出結(jié)果.

解:連接AD,∵DE垂直平分AC,∴DA=DC

∴∠C=DAC,

AB+BD=BC=BD+DC,∴AB=DC=AD,

∴∠B=ADB=70°,

∵∠ADB=C+DAC=2C,

∴∠C=35°,

∴∠BAC=180°―∠B―∠C=75°.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A0,3)、B30)、C(﹣3,0).

1)過(guò)B作直線MNAB,P為線段OC上的一動(dòng)點(diǎn),APPH交直線M于點(diǎn)H,證明:PAPH

2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰RtAPQ繞點(diǎn)A旋轉(zhuǎn),且APPQ,∠APQ90°,連接BQ,點(diǎn)GBQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DEACD,交ABE,下述結(jié)論:(1BD平分∠ABC;(2AD=BD=BC;(3)△BCD的周長(zhǎng)等于ABBC;(4DAC中點(diǎn)其中正確的命題序號(hào)是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為神秘?cái)?shù)”.

如:,,,因此,,這三個(gè)數(shù)都是神秘?cái)?shù).

(1)是神秘?cái)?shù)嗎?為什么?

(2)設(shè)兩個(gè)連續(xù)偶數(shù)為(其中取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是的倍數(shù)嗎?為什么?

(3)①若長(zhǎng)方形相鄰兩邊長(zhǎng)為兩個(gè)連續(xù)偶數(shù),試說(shuō)明其周長(zhǎng)一定為神秘?cái)?shù).

②在①的條件下,面積是否為神秘?cái)?shù)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AD,ABBC,ADDC,垂足分別為BD

1)求證:ABC≌△ADC

2)連接BDAC于點(diǎn)E,求證:BE=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在矩形中,,,四邊形的三個(gè)頂點(diǎn)、分別在矩形上,

如圖,當(dāng)四邊形為正方形時(shí),求的面積;

如圖,當(dāng)四邊形為菱形時(shí),設(shè),的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校后勤人員到文具店給八年級(jí)學(xué)生購(gòu)買(mǎi)考試專用文具包,該文具店規(guī)定一次性購(gòu)買(mǎi)400個(gè)以上,可享受八折優(yōu)惠.若按八年級(jí)學(xué)生實(shí)際人數(shù)每人購(gòu)買(mǎi)一個(gè),不能享受八折優(yōu)惠,需付款1936;若再多買(mǎi)88個(gè)就可享受八折優(yōu)惠,并且同樣只需付款1936元求該校八年級(jí)學(xué)生的總?cè)藬?shù)和文具包的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形中,點(diǎn)是對(duì)角線上一點(diǎn),且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖矩形的對(duì)角線、交于點(diǎn),過(guò)點(diǎn),且,連接,判斷四邊形的形狀并說(shuō)明理由.

(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁?說(shuō)明理由.

(3)如果題目中的矩形變?yōu)檎叫,結(jié)論又應(yīng)變?yōu)槭裁?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案