【題目】已知:如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連接BE.
(1)求證:BE與⊙O相切;
(2)連接AD并延長交BE于點F,若OB=9,sin∠ABC= ,求BF的長.
【答案】
(1)證明:連接OC,
∵OD⊥BC,
∴∠COE=∠BOE,
在△OCE和△OBE中,
∵ ,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,即OB⊥BE,
∵OB是⊙O半徑,
∴BE與⊙O相切.
(2)解:過點D作DH⊥AB,連接AD并延長交BE于點F,
∵∠DOH=∠BOD,∠DHO=∠BDO=90°,
∴△ODH∽△OBD,
∴
又∵sin∠ABC= ,OB=9,
∴OD=6,
易得∠ABC=∠ODH,
∴sin∠ODH= ,即 = ,
∴OH=4,
∴DH= =2 ,
又∵△ADH∽△AFB,
∴ = , = ,
∴FB=
【解析】(1)連接OC,先證明△OCE≌△OBE,得出EB⊥OB,從而可證得結論.(2)過點D作DH⊥AB,根據(jù)sin∠ABC= ,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性質得出比例式即可解出BF的長.
【考點精析】解答此題的關鍵在于理解相似三角形的判定與性質的相關知識,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方,以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小李騎自行車離家的距離s(km)與時間t(h)之間的關系.
(1)在這個變化過程中自變量是 , 因變量是 .
(2)小李何時到達離家最遠的地方?此時離家多遠?
(3)分別求出在1≤t≤2時和2≤t≤4時小李騎自行車的速度.
(4)請直接寫出小李何時與家相距20km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABCM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班開展安全知識競賽活動,班長將所有同學的成績(得分為整數(shù),滿分100分)分成四類,并制作了如下的統(tǒng)計圖表:
類別 | 甲 | 乙 | 丙 | 丁 |
成績 | 60≤m<70 | 70≤m<80 | 80≤m<90 | 90≤m<100 |
頻數(shù) | 5 | 10 | a | b |
根據(jù)圖表信息,回答下列問題:
(1)該班共有學生 人,表中a= ,b= ;
(2)扇形圖中,丁類所對應的圓心角是 度;
(3)已知A同學在丁類中,現(xiàn)從丁類同學中隨機抽兩名同學參加學校的決賽,請用列舉的方法求A同學能夠參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C′的位置上.
(1)若∠1=60°,求∠3的度數(shù);
(2)求證:BE=BF
(3)若AB=6,AD=12,求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知x1,x2是一元二次方程4kx2﹣4kx+k+2=0的兩個實數(shù)根.是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請您說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】1號探測氣球從海拔5 m處出發(fā),以l m/min的速度上升.與此同時,2號探測氣球從海拔15 m處出發(fā),以0.5 m/min的速度上升,兩個氣球都勻速上升了50 min.設氣球上升的時間為x(min)(0≤x≤50).
(1)根據(jù)題意,填寫下表:
(2)在某時刻兩個氣球能否位于同一高度?如果能,這時氣球上升了多長時間?位于什么高度?如果不能,請說明理由.
(3)當30≤x≤50時,兩個氣球所在位置的海拔最多相差多少米?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com