【題目】如圖,,,點在邊上,點在邊的延長線上,且,垂足為,的延長線交于點.
(1)若,求四邊形的面積;
(2)若,求證:.
【答案】(1)100;(2)見解析.
【解析】
(1)先證明四邊形ABCD是正方形,再根據已知條件證明△BCF≌△DCE,即可得到四邊形的面積=正方形ABCD的面積;
(2) 延長BG交AD于點M,作AN⊥MN,連接FG,先證明四邊形BCEM是平行四邊形,得到BM=CE,證明△BCF≌△GCF,得到BF=GF,∠FGC=∠FBC=,由AN⊥MN,得GM=2MN,根據∠BAC=45,BC∥AD得到AM=BF,再證△BFH≌△AMN,得到GM=2FH,
由此得到結論.
(1)∵,
∴△ABC是等腰直角三角形,
∵,
∴AB=AD=BC=DC,
∴四邊形ABCD是菱形,
∵,
∴四邊形ABCD是正方形,
∴∠BCD=,
∴∠CDE=,
∵BF=DE,BC=DC,
∴△BCF≌△DCE,
∴四邊形的面積=S正方形ABCD=AB2=102=100.
(2)延長BG交AD于點M,作AN⊥MN,連接FG,
∵△BCF≌△DCE,
∴∠BCF=∠DCE,
∴∠FCE=∠BCD=,
∵BG⊥CF,
∴∠FHM=∠FCE=,
∴BM∥CE,
∵BC∥AD,
∴四邊形BCEM是平行四邊形,
∴BM=CE.
∵,BG⊥CF,
∴∠BCH=∠GCH,∠CBM=∠CGB,
∴△BCF≌△GCF,
∴BF=GF,∠FGC=∠FBC=,
∵∠BAC=45,
∴∠AFG=∠BAC=45,
∴FG=AG,
∵BC∥AD,
∴∠CBM=∠AMB,
∴∠AGM=∠CGB=∠CBM=∠AMB,
∴AM=AG,
∵AN⊥MN,
∴GM=2MN,
∵∠BAD=∠ANM=,
∴∠ABM+∠AMN=∠MAN+∠AMN=,
∴∠ABM=∠MAN,
∵AM=AG=FG=BF,∠BHF=∠ANM=,
∴△BFH≌△AMN,
∴FH=MN,
∴GM=2FH,
∵BG+GM=CE,
∴.
科目:初中數學 來源: 題型:
【題目】如圖已知:E是∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.求證:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應值,(表格中的符號“…”表示該項數據已丟失)
x | ﹣1 | 0 | 1 |
ax2 | … | … | 1 |
ax2+bx+c | 7 | 2 | … |
(1)求拋物線y=ax2+bx+c的表達式
(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;
(3)在(2)的條件下,設線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,的三個頂點的坐標分別為、、. 與關于軸對稱,與關于軸對稱,點、、分別是點、、的對應點,點、、分別是、、的對應點.
(1)畫出與,并寫出點、、的坐標;
(2)連接、,求六邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(﹣1,0)、C(2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數關系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)設點M(3,n),求使MN+MD取最小值時n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,在邊上順次取點,,…,在邊上順次取點,,…,使得…,得到等腰△,△,△,△…
(1)若=30°,可以得到的最后一個等腰三角形是_________;
(2)若按照上述方式操作,得到的最后一個等腰三角形是△,則的度數的取值范圍是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com