【題目】如圖,的三個頂點(diǎn)的坐標(biāo)分別為、、. 與關(guān)于軸對稱,與關(guān)于軸對稱,點(diǎn)、、分別是點(diǎn)、、的對應(yīng)點(diǎn),點(diǎn)、、分別是、、的對應(yīng)點(diǎn).
(1)畫出與,并寫出點(diǎn)、、的坐標(biāo);
(2)連接、,求六邊形的面積.
【答案】(1)圖見解析,A2(3,-6),B2(6,-2),C2(-6,-3);(2)105.
【解析】
(1)根據(jù)軸對稱關(guān)系即可畫出圖形,得到點(diǎn)、、的坐標(biāo);
(2)根據(jù)點(diǎn)B、C、B2、C2的坐標(biāo)得到四邊形BC2B2C是平行四邊形,分別求出平行四邊形BC2B2C的面積,△ABC的面積,即可求得六邊形的面積.
(1)如圖,A2(3,-6),B2(6,-2),C2(-6,-3),
(2)∵,,B2(6,-2),C2(-6,-3),
∴BC2∥B2C,BC2=B2C=5,
∴四邊形BC2B2C是平行四邊形,
∴平行四邊形BC2B2C的面積=,
∵△ABC的面積=,
∴六邊形的面積= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABCD中,∠D=45°,E為BC上一點(diǎn),連接AC,AE,
(1)若AB=2,AE=4,求BE的長;
(2)如圖2,過C作CM⊥AD于M,F為AE上一點(diǎn),CA=CF,且∠ACF=∠BAE,求證:AF+AB=AM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費(fèi)的方法按月計算每戶家庭的電費(fèi),分兩檔收費(fèi):第一檔是當(dāng)月用電量不超過220kWh時實(shí)行“基礎(chǔ)電價”;第二檔是當(dāng)用電量超過220kWh時,其中的220kWh仍按照“基礎(chǔ)電價”計費(fèi),超過的部分按照“提高電價”收費(fèi).設(shè)每個家庭月用電量為xkWh時,應(yīng)交電費(fèi)為y元.具體收費(fèi)情況如圖所示,請根據(jù)圖象回答下列問題:
(1)“基礎(chǔ)電價”是 元/kwh;
(2)求出當(dāng)x>220時,y與x的函數(shù)解析式;
(3)若小豪家六月份繳納電費(fèi)121元,求小豪家這個月用電量為多少kWh?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點(diǎn)E在弧AD上,射線AE與CD的延長線交于點(diǎn)F.
(1)求圓O的半徑;
(2)如果AE=6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的的平分線與的外角平分線相交于點(diǎn),點(diǎn)分別在線段、上,點(diǎn)在的延長線上,與關(guān)于直線對稱,若,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點(diǎn)在邊上,點(diǎn)在邊的延長線上,且,垂足為,的延長線交于點(diǎn).
(1)若,求四邊形的面積;
(2)若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小蘇和小林在如圖所示的跑道上進(jìn)行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是( )
A. 兩人從起跑線同時出發(fā),同時到達(dá)終點(diǎn).
B. 小蘇跑全程的平均速度大于小林跑全程的平均速度.
C. 小蘇在跑最后100m的過程中,與小林相遇2次.
D. 小蘇前15s跑過的路程小于小林前15s跑過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):
如圖1,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為__________;
(2)深入探究:
如圖2,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;
(3)拓展延伸:
如圖3,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線交軸于點(diǎn),在軸正方向上取點(diǎn),使;過點(diǎn)作軸,交于點(diǎn),在軸正方向上取點(diǎn),使;過點(diǎn)作軸,交于點(diǎn),…記面積為,面積為,面積為,…,則等于( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com