【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AECD的延長線交于點F.

(1)求圓O的半徑;

(2)如果AE=6,求EF的長.

【答案】(1) 圓的半徑為4.5;(2) EF=

【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;

(2)過OOGAEG,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.

(1)連接OD,

直徑AB⊥CD,CD=4,

∴DH=CH=CD=2

Rt△ODH中,AH=5,

設(shè)圓O的半徑為r,

根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,

解得:r=4.5,

則圓的半徑為4.5;

(2)過OOG⊥AEG,

∴AG=AE=×6=3,

∵∠A=∠A,∠AGO=∠AHF,

∴△AGO∽△AHF,

,

,

∴AF=,

∴EF=AF﹣AE=﹣6=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且ABAE,延長ABDE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)模型建立:

如圖,等腰直角三角形中,,,直線經(jīng)過點,過,過.求證:;

2)模型應(yīng)用:

①如圖,一次函數(shù)的圖象分別與軸、軸交于點、,以線段為腰在第一象限內(nèi)作等腰直角三角形,則點的坐標(biāo)為___________(直接寫出結(jié)果)

②如圖,在中,,,,連接,作點,延長交于點,求證:的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,作,垂足為F,延長DF交邊AB于點E,在圖中一定和DFC相似的三角形個數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,點D,E分別在邊AB,BC上,BABD=BCBE

(1)求證:BDE∽△BCA;

(2)如果AE=AC,求證:AC2=ADAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應(yīng)值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)

x

﹣1

0

1

ax2

1

ax2+bx+c

7

2

(1)求拋物線y=ax2+bx+c的表達(dá)式

(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側(cè)的拋物線于點B,當(dāng)△ADM△BDM的面積比為2:3時,求B點坐標(biāo);

(3)在(2)的條件下,設(shè)線段BDx軸交于點C,試寫出∠BAD∠DCO的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三個頂點的坐標(biāo)分別為、、. 關(guān)于軸對稱,關(guān)于軸對稱,點、分別是點、的對應(yīng)點,點、、分別是、的對應(yīng)點.

1)畫出,并寫出點、、的坐標(biāo);

2)連接、,求六邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在邊上順次取點,…,在邊上順次取點,,…,使得,得到等腰△,△,△,△

1)若=30°,可以得到的最后一個等腰三角形是_________;

2)若按照上述方式操作,得到的最后一個等腰三角形是△,則的度數(shù)的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點B,D在⊙O上,點E在⊙O外,∠EAB=D=30°.

(1)C的度數(shù)為   ;

(2)求證:AE是⊙O的切線;

(3)當(dāng)AB=3時,求圖中陰影部分的面積(結(jié)果保留根號和π).

查看答案和解析>>

同步練習(xí)冊答案