【題目】如圖ABCD是一個(gè)矩形桌子,一小球從P撞擊到Q,反射到R,又從R反射到S,從S反射回原處P,入射角與反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.則小球所走的路徑的長為_____.
【答案】30.
【解析】
證明四邊形SPQR是平行四邊形,推出SR=PQ,PS=QR,證三角形全等得出SR=PQ,RQ=PS,根據(jù)相似求出DS,根據(jù)勾股定理求出即RS,RQ,PQ,SP即可.
解:∵入射角與反射角相等,
∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,
∵四邊形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,
∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,
∴∠DSP=∠AQP=∠CSR=∠BQR,
∴∠RSP=∠RQP,
同理∠SRQ=∠SPQ,
∴四邊形SPQR是平行四邊形,
∴SR=PQ,PS=QR,
在△DSP和△BQR中
,
∴△DSP≌△BQR(AAS),
∴BR=DP=4,BQ=DS,
∵四邊形ABCD是矩形,
AB=CD=9,BC=AD=112,
∴AQ=9﹣DS,AP=12﹣4=8,
∵∠SPD=∠APQ,
∴△SDP∽△QAP,
,
,
∴DS=3,
在Rt△DSP中,由勾股定理得:PS=QR=,
同理PQ=RS=10,
∴QP+PS+SR+QR=2×5+2×10=30,
故答案為:30.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,A1,A2,A3…An都在直線1:y=x+1上,點(diǎn)B,B1,B2,B3…Bn都在x軸上,且AB1⊥1,B1A1⊥x軸,A1B2⊥1,B2A2⊥x軸,則An的橫坐標(biāo)為_________(用含有n的代數(shù)式表示)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個(gè)三位數(shù),它的各個(gè)數(shù)位上的數(shù)字都不為零,且滿足百位上的數(shù)字與個(gè)位上的數(shù)字的平均數(shù)等于十位上的數(shù)字,則稱這個(gè)三位數(shù)為開合數(shù).設(shè)為一個(gè)開合數(shù),將的百位數(shù)字與個(gè)位數(shù)字交換位置后得到的新數(shù)再與相加的和記為.例如:852是“開合數(shù)”,則.
(1)已知開合數(shù)(,且為整數(shù)),求的值;
(2)三位數(shù)是一個(gè)開合數(shù),若百位數(shù)字小于個(gè)位數(shù)字,是一個(gè)整數(shù),且能被個(gè)位數(shù)字與百位數(shù)字的差整除,請求滿足條件的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測量旗桿的高度,在旗桿的底部A處測得點(diǎn)D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結(jié)果精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn),過作軸于點(diǎn).點(diǎn)為反比例函數(shù)圖象上的一動(dòng)點(diǎn),過點(diǎn)作軸于點(diǎn),連接.直線與軸的負(fù)半軸交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)若,求的面積;
(3)是否存在點(diǎn),使得四邊形為平行四邊形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班為參加學(xué)校的大課間活動(dòng)比賽,準(zhǔn)備購進(jìn)一批跳繩,已知2根型跳繩和1根型跳繩共需56元,1根型跳繩和2根型跳繩共需82元.
(1)求一根型跳繩和一根型跳繩的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的跳繩共50根,并且型跳繩的數(shù)量不多于型跳繩數(shù)量的3倍,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,半徑為1的⊙O與x軸正半軸和y軸正半軸分別交于A,B兩點(diǎn),直線l:y=kx+2(k<0)與x軸和y軸分別交于P,M兩點(diǎn).
(1)當(dāng)直線與⊙O相切時(shí),求出點(diǎn)M的坐標(biāo)和點(diǎn)P的坐標(biāo);
(2)如圖2,當(dāng)點(diǎn)P在線段OA上時(shí),直線1與⊙O交于E,F兩點(diǎn)(點(diǎn)E在點(diǎn)F的上方)過點(diǎn)F作FC∥x軸,與⊙O交于另一點(diǎn)C,連結(jié)EC交y軸于點(diǎn)D.
①如圖3,若點(diǎn)P與點(diǎn)A重合時(shí),求OD的長并寫出解答過程;
②如圖2,若點(diǎn)P與點(diǎn)A不重合時(shí),OD的長是否發(fā)生變化,若不發(fā)生變化,請求出OD的長并寫出解答過程;若發(fā)生變化,請說明理由.
(3)如圖4,在(2)的基礎(chǔ)上,連結(jié)BF,將線段BF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°到BQ,若點(diǎn)Q在CE的延長線時(shí),請用等式直接表示線段FC,FQ之間的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com