【題目】如圖,在正方形中,分別是邊、上的點(diǎn),,的周長(zhǎng)為6,則正方形的邊長(zhǎng)為__________.

【答案】3.

【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠EAF′=45°,進(jìn)而得出FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=6,得出正方形邊長(zhǎng)即可.

解:將DAF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90度到BAF′位置,

由題意可得出:DAF≌△BAF′,

DF=BF′,∠DAF=BAF′,

∴∠EAF′=45°

FAEEAF′

,

∴△FAE≌△EAF′SAS),

EF=EF′,

∵△ECF的周長(zhǎng)為6,

EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=6,

2BC=6

BC=3

故答案為:3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A0,0),B2,0),AP1B是等腰直角三角形,且∠P190°,把AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到BP2C,把BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到CP3D,依此類推,得到的等腰直角三角形的直角頂點(diǎn)P2017的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y個(gè))與銷售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種健身球的銷售單價(jià)不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市生物和地理會(huì)考的考試結(jié)果以等級(jí)形式呈現(xiàn),分A、BC、D四個(gè)等級(jí).某校八年級(jí)學(xué)生參加生物會(huì)考后,隨機(jī)抽取部分學(xué)生的生物成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績(jī).扇形統(tǒng)計(jì)圖中,D等級(jí)所對(duì)應(yīng)的扇形圓心角度數(shù)為 °

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校八年級(jí)有400名學(xué)生,估計(jì)這次考試有多少名學(xué)生的生物成績(jī)等級(jí)為D級(jí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,CDAB,點(diǎn)FBC上,連DFAB的延長(zhǎng)線交于點(diǎn)G

1)求證:CFFGDFBF;

2)當(dāng)點(diǎn)FBC的中點(diǎn)時(shí),過(guò)FEFCDAD于點(diǎn)E,若AB12EF8,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共60件,需購(gòu)買甲、乙兩種材料.生產(chǎn)一件產(chǎn)品需甲種材料4千克;生產(chǎn)一件產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買甲、乙兩種材料各1千克共需資金60元;購(gòu)買甲種材料2千克和乙種材料3千克共需資金155.

1)甲、乙兩種材料每千克分別是多少元?

2)現(xiàn)工廠用于購(gòu)買甲、乙兩種材料的資金不超過(guò)9900元,且生產(chǎn)產(chǎn)品不少于38件,問(wèn)符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?

3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費(fèi)40元,生產(chǎn)一件產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費(fèi)+加工費(fèi))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABCD是一個(gè)矩形桌子,一小球從P撞擊到Q,反射到R,又從R反射到S,從S反射回原處P,入射角與反射角相等(例如∠PQA=∠RQB等),已知AB9,BC12,BR4.則小球所走的路徑的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),其對(duì)稱軸為直線,結(jié)合圖象分析下列結(jié)論:①;②;③當(dāng)時(shí),的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個(gè)根,則,其中正確的結(jié)論有( 。

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)

)分別求這兩個(gè)函數(shù)的表達(dá)式.

)將直線向上平移個(gè)單位長(zhǎng)度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接,求點(diǎn)的坐標(biāo)及的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案