【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結(jié)果精確到個位).
【答案】旗桿AB的高度約為16米.
【解析】
延長BD,AC交于點E,過點D作DF⊥AE于點F.構(gòu)建直角△DEF和直角△CDF.通過解這兩個直角三角形求得相關(guān)線段的長度即可.
解:延長BD,AC交于點E,過點D作DF⊥AE于點F.
∵i=tan∠DCF=,
∴∠DCF=30°.
又∵∠DAC=15°,
∴∠ADC=15°.
∴CD=AC=10.
在Rt△DCF中,DF=CDsin30°=10×=5(米),
CF=CDcos30°=10×,∠CDF=60°.
∴∠BDF=45°+15°+60°=120°,
∴∠E=120°﹣90°=30°,
在Rt△DFE中,EF=,
∴AE=10++=+10.
在Rt△BAE中,BA=AEtanE=(+10)×=10+≈16(米).
答:旗桿AB的高度約為16米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會.某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.
(1)求每件銷售單價y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?
(3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補貼m(m≤40)元.在獲得國家每件m元補貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一副含和角的三角板和疊合在一起,邊與重合,(如圖1),點為邊的中點,邊與相交于點,現(xiàn)將三角板繞點按順時針方向旋轉(zhuǎn)(如圖2),在從到的變化過程中,點相應(yīng)移動的路徑長共為____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,CD≠AB,點F在BC上,連DF與AB的延長線交于點G.
(1)求證:CFFG=DFBF;
(2)當(dāng)點F是BC的中點時,過F作EF∥CD交AD于點E,若AB=12,EF=8,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某學(xué)校興趣小組活動情況,隨機抽取了部分同學(xué)進(jìn)行調(diào)查,按A:藝術(shù),B:科技,C:體育,D:其他四個項目進(jìn)行統(tǒng)計,繪制了兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖解答以下問題:
(1)本次接受問卷調(diào)查的共有 人:在扇形統(tǒng)計圖中“D”選項所占的百分比為 ;
(2)扇形統(tǒng)計圖中,“B”選項所對應(yīng)扇形圓心角為 度;
(3)請補全條形統(tǒng)計圖;
(4)若全校有2000人,請你估算一下全校喜歡藝術(shù)類學(xué)生的人數(shù)有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖ABCD是一個矩形桌子,一小球從P撞擊到Q,反射到R,又從R反射到S,從S反射回原處P,入射角與反射角相等(例如∠PQA=∠RQB等),已知AB=9,BC=12,BR=4.則小球所走的路徑的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( )
A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點坐標(biāo)是(,)
B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點
D. 當(dāng)m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x+3分別相交于A,B兩點,且此拋物線與x軸的一個交點為C,連接AC,BC.已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB﹣MC|的值最大,并求出這個最大值;
(3)點P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形中,,點是的中點,將繞點旋轉(zhuǎn)至的位置,使,其中點的運動路徑為弧,連接,則圖中陰影部分的面積為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com