【題目】如圖,將三角形紙片放在平面直角坐標(biāo)系中,,,,點B在x軸的正半軸上,點是邊上的一個動點(點P不與點O、B重合),過點P作于點D,沿折疊該紙片,使點O落在射線上的Q點處.
(Ⅰ)用含t的代數(shù)式表示線段的長;
(Ⅱ)當(dāng)點Q與點C重合時,求t的值;
(Ⅲ)設(shè)與四邊形重疊部分的圖形的面積為S,求S與t之間的函數(shù)關(guān)系式;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過的三個頂點,與軸相交于,點坐標(biāo)為,點是點關(guān)于軸的對稱點,點在軸的正半軸上.
(1)求該拋物線的函數(shù)解析式;
(2)點為線段上一動點,過點作軸,軸, 垂足分別為點,,當(dāng)四邊形為正方形時,求出點的坐標(biāo);
(3)將(2) 中的正方形沿向右平移,記平移中的正方形為正方形,當(dāng)點和點重合時停止運動, 設(shè)平移的距離為,正方形的邊與交于點,所在的直線與交于點, 連接,是否存在這樣的,使是等腰三角形?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以直線為對稱軸的拋物線為常數(shù))經(jīng)過點A和B.
求該拋物線的解析式;
若點是該拋物線上的一動點,設(shè)點的橫坐標(biāo)為.
①當(dāng)是以為直角邊的直角三角形時,求的值;
②若滿足,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y1=mx2+n,y2=nx+m(mn≠0),則兩個函數(shù)在同一坐標(biāo)系中的圖象可能為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸是,且(m為實數(shù))在范圍內(nèi)有實數(shù)根,則m的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC是⊙O的直徑,OE⊥BC交AB于點E,若BE=2AE,則∠ADC =_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點D作DF⊥AB于F,交⊙O于點E,點M是BE的中點,AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,AB=AC,BC=6,BE為中線,點D為BC邊上一點;BD=2CD,DF⊥BE于點F,EH⊥BC于點H.
(1)CH的長為_____;
(2)求BF·BE的值:
(3)如圖2,連接FC,求證:∠EFC=∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當(dāng)點C與點M重合時AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com