【題目】201712月全市組織了計算機等級考試,江南中學九(1)班同學都參加了計算機等級考試,分第一試場、第二試場、第三試場,下面兩幅統(tǒng)計圖反映原來安排九(1)班考生人數(shù),請你根據(jù)圖中的信息回答下列問題:

(1)該班參加第三試場考試的人數(shù)為_____,并補全頻數(shù)分布直方圖;

(2)根據(jù)實際情況,需從第一試場調(diào)部分學生到第三試場考試,使第一試場的人數(shù)與第三試場的人數(shù)比為2:3,應從第一試場調(diào)多少學生到第三試場?

【答案】10

【解析】1)由扇形統(tǒng)計圖知道參加第一試場考試的人數(shù)占50%,用參加第一試場考試的人數(shù)除以50%即可得總?cè)藬?shù),總?cè)藬?shù)減去第一、二試場的人數(shù)可得;

2)求出兩個試場的總?cè)藬?shù),根據(jù)人數(shù)比為23求出調(diào)整后第三試場的人數(shù),然后減去原來第三試場的人數(shù)即可.

1)由條形圖可知,參加考試的總?cè)藬?shù)為25÷50%=50人.

則參加第三試場考試的人數(shù)為50﹣(25+15)=10補全圖形如下

2)調(diào)整后參加第三試場的人數(shù)為:(25+10×=21∴應從第一試場調(diào)到第三試場的學生數(shù)為2110=11人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE交BD于點G,交BC于點H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.

(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;

(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°AC3,BC4,點DAB上,ADACAFCDCD于點E,交CB于點F,則CF的長是(。

A.1.5B.1.8C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的20個小球,其中紅球6個,黑球14

1)先從袋子中取出xx3)個紅球后,再從袋子中隨機摸出1個球,將“摸出黑球”,記為事件A.請完成下列表格.

事件A

必然事件

隨機事件

x的值

2)先從袋子中取出m個紅球,再放入2m個一樣的黑球并搖勻,隨機摸出1個球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由12個形狀、大小完全相同的小矩形組成一個大的矩形網(wǎng)格,小矩形的頂點稱為這個矩形網(wǎng)格的格點,已知這個大矩形網(wǎng)格的寬為6,ABC的頂點都在格點.

(1)求每個小矩形的長與寬;

(2)在矩形網(wǎng)格中找一格點E,使△ABE為直角三角形,求出所有滿足條件的線段AE的長度.

(3)求sinBAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點,∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級共有800名學生,準備調(diào)查他們對低碳知識的了解程度.

(1)在確定調(diào)查方式時,團委設計了以下三種方案:

方案一:調(diào)查七年級部分女生;

方案二:調(diào)查七年級部分男生;

方案三:到七年級每個班去隨機調(diào)查一定數(shù)量的學生.

請問其中最具有代表性的一個方案是   ;

(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,比較了解所在扇形的圓心角的度數(shù)是   

(4)請你估計該校七年級約有   名學生比較了解低碳知識.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為打造書香校園,計劃購進甲、乙兩種規(guī)格的書柜放置新購進的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.

(1)甲、乙兩種書柜每個的價格分別是多少元?

(2)若該校計劃購進這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學校至多能夠提供資金4320元,請設計幾種購買方案供這個學校選擇.

查看答案和解析>>

同步練習冊答案