【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2=的圖象交于 A(﹣1,a),B 兩點(diǎn).
(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);
(2)觀察圖象,請(qǐng)直接寫出滿足 y≤2 的取值范圍;
(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若△POB 的面積為 1,請(qǐng)直接寫出點(diǎn) P的橫坐標(biāo).
【答案】(1)y=﹣,B(1,﹣2);(2)x﹣1 或 x>0;(3).
【解析】
(1)已知點(diǎn)A的坐標(biāo)代入正比例函數(shù)可求出a,再把點(diǎn)A坐標(biāo)代入可求出反比例函數(shù)解析式;又因?yàn)檎壤瘮?shù)和反比例函數(shù)交點(diǎn)是A、B,可知A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱從而可求出B點(diǎn)坐標(biāo)
(2)觀察圖像即可得出
(3)根據(jù)題意補(bǔ)全圖形把三角形的面積轉(zhuǎn)換成梯形的面積然后根據(jù)已知求解一元二次方程,把不符合實(shí)際情況的根舍掉即可得出答案。
(1)把 A(﹣1,a)代入 y=﹣2x,可得 a=2,
∴A(﹣1,2),
把 A(﹣1,2)代入 y=,可得 k=﹣2,
∴反比例函數(shù)的表達(dá)式為 y=﹣,
∵點(diǎn) B 與點(diǎn) A 關(guān)于原點(diǎn)對(duì)稱,
∴B(1,﹣2).
(2)∵A(﹣1,2),
∴y≤2 的取值范圍是 x﹣1 或 x>0;
(3)作 BM⊥x 軸于 M,PN⊥x 軸于 N,
∵S 梯形 MBPN=S△POB=1,
設(shè) P(m,﹣),則×(2+)(m﹣1)=1 或 ×(2+)(1﹣m)=1整理得,m2﹣m﹣1=0 或 m2+m+1=0,
解得 m=
∴P 點(diǎn)的橫坐標(biāo)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A、B分別在x軸、y軸的正半軸上運(yùn)動(dòng),點(diǎn)M為線段AB的中點(diǎn).點(diǎn)D、E分別在x軸、y軸的負(fù)半軸上運(yùn)動(dòng),且DE=AB=10.以DE為邊在第三象限內(nèi)作正方形DGFE,則線段MG長(zhǎng)度的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銳銳參加我市電視臺(tái)組織的“牡丹杯”智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題銳銳都不會(huì),不過銳銳還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是________;
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是________;
(3)如果銳銳每道題各用一次“求助”,請(qǐng)用樹狀圖或者列表來分析他順利通關(guān)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)黨中央“長(zhǎng)江大保護(hù)”新發(fā)展理念,我市持續(xù)推進(jìn)長(zhǎng)江岸線保護(hù),還洞庭湖和長(zhǎng)江水清岸綠的自然生態(tài)原貌.某工程隊(duì)負(fù)責(zé)對(duì)一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊(duì)增加了人力和設(shè)備,實(shí)際工作效率比原計(jì)劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實(shí)際平均每天施工多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的對(duì)稱軸為.點(diǎn)在直線上.
(1)求, 的值;
(2)若點(diǎn)在二次函數(shù)上,求的值;
(3)當(dāng)二次函數(shù)與直線相交于兩點(diǎn)時(shí),設(shè)左側(cè)的交點(diǎn)為,若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測(cè)出了A、B間的距離:先在AB外選一點(diǎn)C,然后測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)量出MN的長(zhǎng)為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動(dòng)的描述錯(cuò)誤的是( )
A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量建筑物AB的高度,在D處樹立標(biāo)桿CD,標(biāo)桿的高是2m,在DB上選取觀測(cè)點(diǎn)E、F,從E測(cè)得標(biāo)桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測(cè)得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為直線x=,且經(jīng)過點(diǎn)(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中說法正確的有( )
A. ②③④ B. ①②③ C. ①④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對(duì)稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點(diǎn) O逆時(shí)針方向旋轉(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過的圖形面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com