【題目】如圖,已知,在平面直角坐標(biāo)系中S△ABC=24,OA=OB,BC=12.
(1)求出三個頂點(diǎn)坐標(biāo).
(2)若P點(diǎn)為y軸上的一動點(diǎn),且△ABP的面積等于△ABC的面積,求點(diǎn)P的坐標(biāo).
【答案】(1)A(0,4),B(-4,0),C(8,0);(2)(0,16)或(0,-8)
【解析】
(1)根據(jù)三角形的面積公式求出OA、OB、OC的長,確定△ABC三個頂點(diǎn)的坐標(biāo);
(2)根據(jù)圖形和三角形的面積公式求出AP的長,運(yùn)用分情況討論思想得到P點(diǎn)的坐標(biāo).
解:(1)∵S△ABC=BCOA=24,OA=OB,BC=12,∴OA=OB==4,
∴OC=8,
∴A(0,4),B(-4,0),C(8,0);
(2)設(shè)AP長為x,
∵S△ABP=S△ABC=24,
∴APOB=24,
∵OB=4,
∴AP=12,
當(dāng)P點(diǎn)在點(diǎn)A上方時,點(diǎn)P(0,16),
當(dāng)P點(diǎn)在點(diǎn)A下方時,點(diǎn)P(0,-8),
綜上所述P點(diǎn)坐標(biāo)為(0,16)或(0,-8).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長為1的正方形,與軸正半軸的夾角為15°,點(diǎn)在拋物線的圖象上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A,B兩點(diǎn),其頂點(diǎn)P在折線C-D-E上移動,若點(diǎn)C,D,E的坐標(biāo)分別為(-1,4),(3,4),(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,E是AD的中點(diǎn),將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于F,連接EF,若AB=4,若BC=6,則DF的長為_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過點(diǎn)D作DF⊥AC,垂足為F,過點(diǎn)F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關(guān)系并證明;
(2)求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC中點(diǎn),過點(diǎn)D的直線GF交AC于F,交AC的平行線BG于G,DE⊥DF,交AB于E,連接BG,請你判斷BE+CF與EF的大小關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(3,0),將線段AB向上平移2個單位,再向右平移1個單位,得到線段DC,點(diǎn)A、B的對應(yīng)點(diǎn)分別是D、C,連接AD、BC.
(1)直接寫出點(diǎn)C,D的坐標(biāo);
(2)求四邊形ABCD的面積;
(3)點(diǎn)P為線段BC上任意一點(diǎn)(與點(diǎn)B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為 1,CD⊥AB 于點(diǎn) D,E 為射線 CD 上一點(diǎn),以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1、圖2、圖3,在中,把繞點(diǎn)順時針旋轉(zhuǎn)得到,把繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接,當(dāng)時,我們稱是的“旋補(bǔ)三角形”,邊上的中線叫做的“旋補(bǔ)中線”,點(diǎn)叫做“旋補(bǔ)中心”.圖1、圖2、圖3中的均是的“旋補(bǔ)三角形”.
(1)①如圖2,當(dāng)為等邊三角形時,“旋補(bǔ)中線”與的數(shù)量關(guān)系為:______;
②如圖3,當(dāng),時,則“旋補(bǔ)中線”長為______.
(2)在圖1中,當(dāng)為任意三角形時,猜想“旋補(bǔ)中線”與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com