【題目】如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結論是否仍成立?請說明理由.
如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結論是否仍成立?請說明理由.
【答案】見解析
【解析】分析:(1)用三角形的內(nèi)角和定理判斷∠D+∠B=180°;(2)連接EC,證明∠AEC+∠ACE+∠3+∠4=180°,根據(jù)同旁內(nèi)角互補,兩直線平行證明.
詳解:(1)∵∠1=∠3,∠2=∠4,∴∠1+∠3+∠2+∠4=2(∠1+∠2),
∵∠1+∠2=90°,∴∠1+∠3+∠2+∠4=180°;
∵∠D+∠B+∠1+∠3+∠2+∠4=360°,∴∠D+∠B=180°,
∴DE∥BC.
(2)成立.
如圖2,連接EC;
∵∠1=∠3,∠2=∠4,且∠1+∠2=90°,∴∠3+∠4=∠1+∠2=90°;
∵∠EAC=90°,∴∠AEC+∠ACE=180°-90°=90°,
∴∠AEC+∠ACE+∠3+∠4=180°,
∴DE∥BC,
即(1)中的結論仍成立.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(2,0),B(0,4),作△BOC,使△BOC與△ABO全等,則點C坐標為________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,
求:(1)AB的長為________;
(2)S△ABC=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點P是AB上一動點(不與A,B重合),對角線AC,BD相交于點O,過點P分別作AC,BD的垂線,分別交AC,BD于點E,F,交AD,BC于點M,N.下列結論:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當△PMN∽△AMP時,點P是AB的中點.其中正確的結論的個數(shù)有( )個.
A.5 B.4 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,A(﹣3,﹣2)、B(﹣1,﹣4)
(1)直接寫出:S△OAB= ;
(2)延長AB交y軸于P點,求P點坐標;
(3)Q點在y軸上,以A、B、O、Q為頂點的四邊形面積為6,求Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,把三角形ABC向上平移3個單位長度,再向右平移2個單位長度,得到三角形A1B1C1.
(1)在圖中畫出三角形A1B1C1;
(2)寫出點A1,B1的坐標;
(3)在y軸上是否存在一點P,使得三角形BCP與三角形ABC面積相等?若存在,請直接寫出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=3x2﹣6x+k(k為常數(shù))的圖像經(jīng)過點A(0.8,y1),B(1.1,y2),C( ,y3),則有( )
A.y1<y2<y3
B.y1>y2>y3
C.y3>y1>y2
D.y1>y3>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請將下列證明過程補充完整:
已知:如圖,點P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求證:∠E=∠F
證明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性質)
∴AE∥PF( )
∴∠E=∠F( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,是不可能事件的是
A.買一張電影票,座位號是奇數(shù) B.射擊運動員射擊一次,命中9環(huán)
C.明天會下雨 D.度量三角形的內(nèi)角和,結果是360°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com