【題目】如圖,在正方形ABCD中,點P是AB上一動點(不與A,B重合),對角線AC,BD相交于點O,過點P分別作AC,BD的垂線,分別交AC,BD于點E,F,交AD,BC于點M,N.下列結(jié)論:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當△PMN∽△AMP時,點P是AB的中點.其中正確的結(jié)論的個數(shù)有( 。﹤.
A.5 B.4 C.3 D.2
【答案】B.
【解析】
試題分析:∵四邊形ABCD是正方形,
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正確;
∴PE=EM=PM,
同理,F(xiàn)P=FN=NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四邊形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,F(xiàn)P=FN=NP,OA=AC,
∴PM+PN=AC,故②正確;
∵四邊形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2=PO2,故③正確.
∵△BNF是等腰直角三角形,而△POF不一定是,故④錯誤;
∵△AMP是等腰直角三角形,當△PMN∽△AMP時,△PMN是等腰直角三角形.
∴PM=PN,
又∵△AMP和△BPN都是等腰直角三角形,
∴AP=BP,即P時AB的中點.故⑤正確.
故選B.
考點: 1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.勾股定理;4.正方形的性質(zhì).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△MNP中,∠N=60°,MN=3,NP=6,正方形ABCD的邊長為1,它的一邊AD在MN上,且頂點A與M重合.現(xiàn)將正方形ABCD沿邊MN→NP進行翻滾,直到正方形有一個頂點與P重合即停止?jié)L動,正方形在整個翻滾過程中,點A所經(jīng)過的路線與Rt△MNP的兩邊MN、NP所圍成的圖形的面積是( )
A. +2 B.2π+2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利民商店中有3種糖果,單價及重量如下表,若商店將以上糖果配成什錦糖,則這種什錦糖果的單價是每千克____元.
品種 | 水果糖 | 花生糖 | 軟 糖 |
單價(元/千克) | 10 | 12 | 16 |
重量(千克) | 3 | 3 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為進一步緩解城市交通壓力,湖州推出公共自行車.公共自行車在任何一個網(wǎng)店都能實現(xiàn)通租通還,某校學生小明統(tǒng)計了周六校門口停車網(wǎng)點各時段的借、還自行車數(shù),以及停車點整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y的值表示8:00點時的存量,x=2時的y值表示9:00點時的存量…以此類推,他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段 | x | 還車數(shù) | 借車數(shù) | 存量y |
7:00﹣8:00 | 1 | 7 | 5 | 15 |
8:00﹣9:00 | 2 | 8 | 7 | n |
… | … | … | … | … |
根據(jù)所給圖表信息,解決下列問題:
(1)m= ,解釋m的實際意義: ;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知10:00﹣11:00這個時段的還車數(shù)比借車數(shù)的2倍少4,求此時段的借車數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學使用計算器求15個數(shù)據(jù)的平均數(shù)時,錯將一個數(shù)據(jù)15輸成105,那么由此求出的平均數(shù)與實際平均數(shù)的差是( 。
A. 6.5 B. 6 C. 0.5 D. -6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明);
(2)連接DE,求證:△ADE≌△BDE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com