【題目】已知二次函數(shù)

1)求該函數(shù)的圖象與x軸的交點坐標.

2)已知A(-9,),B(1,),C(,)都在該函數(shù)的圖象上,則,,的大小關系為:.

3)把該函數(shù)的圖象沿y軸向什么方向平移多少個單位長度后,與x軸只有一個公共點.

【答案】1(,0),(,0);(2<<;(3)拋物線沿y軸向下平移8個單位長度

【解析】

1)令y=0得到一元二次方程,求出x即可求解;

2)把函數(shù)化為頂點式,根據(jù)二次函數(shù)的圖像與性質即可判斷;

3)根據(jù)題意把頂點平移至x軸上即可,故可求解.

解:(1)令y=0

解得x1=,x2=

∴函數(shù)的圖象與x軸的交點坐標為:(,0)、(,0

2)∵=

故對稱軸x=2,開口向下,故距對稱軸越遠,y值越小,

2--9=11,2-1=1,1-211

<<;

3

頂點坐標為(2,8

拋物線沿y軸向下平移8個單位長度后,頂點在x軸上,即得到的拋物線與x軸只有一個公共點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為測量觀光塔高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請根據(jù)以上觀測數(shù)據(jù)求觀光塔的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,的內接三角形,于點.請僅用無刻度的直尺,畫出的平分線.(保留作圖痕跡,不寫作法).

   

2)如圖2,的外接圓,是非直徑的弦,的中點,連接,是弦上一點,且,請僅用無刻度的直尺,確定出的內心.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在矩形 ABCD 中,AB4,AD3,連接 AC,動點 Q 以每秒 1 個單位的速度沿 A→B→C 向點 C 勻速運動,同時點 P 以每秒 2 個單位的速度沿 A→C→D 向點 D 勻速運動,連接 PQ,當點 P 到達終點 D 時,停止運 動,設APQ 的面積為 S,運動時間為 t 秒,則 S t 函數(shù)關系的圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘗試探究

如圖-,在△ABC中,∠C=90°,∠A=30°,點E、F分別是BC、AC邊上的點,且EF//BC.

的值為 ;直線與直線的位置關系為 ;

類比延伸

如圖,若將圖中的繞點順時針旋轉,連接,則在旋轉的過程中,請判斷的值及直線與直線的位置關系,并說明理由;

拓展運用

,在旋轉過程中,當三點在同一直線上時,請直接寫出此時線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店銷售復習資料,已知每本復習資料進價為40元,市場調查發(fā)現(xiàn):若以每本50元銷售,平均每天可銷售90本,在此基礎上,若售價每提高1元,則平均每天少銷售3本.設漲價后每本的售價為元,書店平均每天銷售這種復習資料的利潤為元.

1)漲價后每本復習資料的利潤為______元,平均每天可銷售______本;

2)求的函數(shù)關系式;

3)當復習資料每本售價為多少時,平均每天的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠A90°,ABAC4,OBC邊上的點且OAB、AC都相切,切點分別為D、E

1)求O的半徑;

2)如果F上的一個動點(不與D、E),過點FO的切線分別與邊AB、AC相交于G、H,連接OG、OH,有兩個結論:四邊形BCHG的周長不變,GOH的度數(shù)不變.已知這兩個結論只有一個正確,找出正確的結論并證明;

3)探究:在(2)的條件下,設BGx,CHy,試問yx之間滿足怎樣的函數(shù)關系,寫出你的探究過程并確定自變量x的取值范圍,并說明當xyF點的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F02)是y 軸上的定點,點B是拋物線上除頂點外的任意一點,直線ly=kx+b經(jīng)過點B、F且交x軸于點A

1)求拋物線的解析式;

2)①如圖1,過點BBCx軸于點C,連接FC,求證:FC平分∠BFO;

②當k= 時,點F是線段AB的中點;

3)如圖2, M3,6)是拋物線內部一點,在拋物線上是否存在點B,使MBF的周長最?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的邊長為,頂點分別在軸、軸的正半軸,拋物線經(jīng)過兩點,點為拋物線的頂點,連接.

(1)求此拋物線的解析式;

(2)直接寫出四邊形的面積.

查看答案和解析>>

同步練習冊答案