【題目】已知中,邊的長與邊上的高的和為,當(dāng)面積最大時,則其周長的最小值為________(用含的代數(shù)式表示).

【答案】

【解析】

設(shè)BC上的高為x,BC=ax,ABC的面積為S,S=xax),根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo)可得出x的值,過點(diǎn)A作直線lBC再作出點(diǎn)B關(guān)于直線l的對稱點(diǎn)E,連接CEl于點(diǎn)F,可得△CBE是直角三角形,根據(jù)勾股定理求出CE的長從而得出周長的最小值

設(shè)BC上的高為x

∵邊BC的長與BC邊上的高的和為aBC=ax,設(shè)△ABC的面積為S,S=xax)=﹣x2+ax

∵當(dāng)△ABC面積最大時,x=aBC=a,過點(diǎn)A作直線lBC,再作出點(diǎn)B關(guān)于直線l的對稱點(diǎn)E連接CE,l于點(diǎn)F,當(dāng)點(diǎn)A與點(diǎn)F重合時,ABC周長的最小值BG=GE=AD=a,BE=a

∵直線lBC,∴∠EBC=∠EGA=90°,CE==a,∴△ABC的最小周長=a

故答案為:a

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).

A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:

對于兩個不等的非零實(shí)數(shù).若分式的值為零,則又因?yàn)?/span>.所以關(guān)于的方程有兩個根分別為

應(yīng)用上面的結(jié)論解答下列問題:

1)方程的兩個解中較小的一個為    

2)關(guān)于解的方程,首先我們兩邊同加,則 ,兩個解分別為, ,

3)關(guān)于的方程的兩個解分別為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港在地的正南千米處,一艘輪船由港開出向西航行,某人第一次在處望見該船在南偏西,半小時后,又望見該船在南偏西,則該船速度為________千米/小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.

1)第一批飲料進(jìn)貨單價多少元?

2)若兩次進(jìn)飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】背景知識:如圖,在中,,若,則:

1)解決問題:

如圖(1),,,是過點(diǎn)的直線,過點(diǎn)于點(diǎn),連接,現(xiàn)嘗試探究線段、、 之間的數(shù)量關(guān)系:過點(diǎn),與交于點(diǎn),易發(fā)現(xiàn)圖中出現(xiàn)了一對全等三角形,即,由此可得線段、、之間的數(shù)量關(guān)系是: ;

2)類比探究:

將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖(2)的位置,其它條件不變,試探究線段、之間的數(shù)量關(guān)系,并證明;

3)拓展應(yīng)用:

將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖 3)的位置,其它條件不變,若,則的長為 (直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8PC=10,若將PAC繞點(diǎn)A逆時針旋轉(zhuǎn)后,得到P′AB,則APB等于(

A150° B105° C120° D90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,4張背面完全相同的紙牌(用、、表示),在紙牌的正面分別寫有四個不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.

(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;

(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲,乙兩名自行車騎手均從P地出發(fā),騎車前往距P60千米的Q地,當(dāng)乙騎手出發(fā)了1.5小時,此時甲,乙兩名騎手相距6千米,因甲騎手接到緊急任務(wù),故甲到達(dá)Q地后立即又原路返回P地甲,乙兩名騎手距P地的路程y(千米)與時間x(時)的函數(shù)圖象如圖所示.(其中折線OABCD(實(shí)線)表示甲,折線OEFG(虛線)表示乙)

1)甲騎手在路上停留   小時,甲從Q地返回P地時的騎車速度為   千米/時;

2)求乙從P地到Q地騎車過程中(即線段EF)距P地的路程y(千米)與時間x(時)的函數(shù)關(guān)系式及自變量x的取值范圍;

3)在乙騎手出發(fā)后,且在甲,乙兩人相遇前,求時間x(時)的值為多少時,甲,乙兩騎手相距8千米.

查看答案和解析>>

同步練習(xí)冊答案