【題目】我們定義一種新的運(yùn)算“”:對(duì)于任意四個(gè)有理數(shù),,,,可以組成兩個(gè)有理數(shù)對(duì)與,并且規(guī)定:.
例如: .
根據(jù)上述規(guī)定解決下列問題:
(1)計(jì)算: ;
(2)若有理數(shù)對(duì),則 ;
(3)若有理數(shù)對(duì)成立,則解得是整數(shù),求整數(shù)的值
【答案】(1)0;(2);(3)-5,-2,-1,或2
【解析】
(1)原式利用題中的新定義計(jì)算即可求出值;
(2)原式利用題中的新定義計(jì)算即可求出x的值;
(3)原式利用題中的新定義計(jì)算,求出整數(shù)k的值即可.
解:(1)根據(jù)題意得:原式=3×2-(-2)×(-3)=0;
(2)根據(jù)題意化簡(jiǎn)得: ,
移項(xiàng)合并得:,
解得:x=;
(3)∵,且x是整數(shù),
∴(2x-1)k-(-3)(x+k)=7+2k,
∴(2k+3)x=7,
∴x= ,
∵k是整數(shù),
∴2k+3=±1或±7
∴k=-5,-2,-1,或2.
故答案為:(1)0;(2);(3)-5,-2,-1,或2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向上的拋物線y=ax2+bx+c,它與x軸的兩個(gè)交點(diǎn)分別為(-1,0),(3,0).對(duì)于下列命題:①b-2a=0;②abc>0;③a-2b+4c<0;④8a+c>0.其中正確的有
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|2a+6|+(2a﹣3b+12)2=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向左平移2個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD.
(1)請(qǐng)直接寫出A、B、C、D四點(diǎn)的坐標(biāo);
(2)如圖2,點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是線段CD的中點(diǎn),連接PQ,PO,當(dāng)點(diǎn)P在線段AC上移動(dòng)時(shí)(不與A,C重合),請(qǐng)找出∠PQD,∠OPQ,∠POB的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在坐標(biāo)軸上是否存在點(diǎn)M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式成立的一對(duì)有理數(shù)為“有趣數(shù)對(duì)”,記為如:數(shù)對(duì),都是“有趣數(shù)對(duì)”.
(1)數(shù)對(duì),中是“有趣數(shù)對(duì)”的是 ;
(2)若是“有趣數(shù)對(duì)”,求的值;
(3)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“有趣數(shù)對(duì)” ;(注意:不能與題目中已有的“有趣數(shù)對(duì)”重復(fù))
(4)若是“有趣數(shù)對(duì)”求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是直線上的一點(diǎn),將一直角三角板如圖擺放,過點(diǎn)作射線平分.
(1)如圖1,如果,依題意補(bǔ)全圖形,求度數(shù);
(2)當(dāng)直角三角板繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊在直線的上方,若,其他條件不變,請(qǐng)你直接用含的代數(shù)式表示的度數(shù)為 ;
(3)當(dāng)直角三角板繞點(diǎn)繼續(xù)順時(shí)針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)與之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的發(fā)現(xiàn): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生測(cè)量一條南北流向的河的寬度,如圖所示,某學(xué)生在河?xùn)|岸點(diǎn)A處觀測(cè)到河對(duì)岸水邊有一點(diǎn)C,測(cè)得C在A北偏西31°的方向上,沿河岸向北前行10米到達(dá)B處,測(cè)得C在B北偏西45°的方向上,請(qǐng)你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出這條河的寬度.(精確到1米,參考數(shù)值:tan31°≈,sin31°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果兩個(gè)三角形的兩組對(duì)應(yīng)邊相等,且它們的夾角互補(bǔ),我們就把其中一個(gè)三角形叫做另一個(gè)三角形的“夾補(bǔ)三角形”,同時(shí)把第三邊的中線叫做“夾補(bǔ)中線.例如:圖1中,△ABC與△ADE的對(duì)應(yīng)邊AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE邊的中線,則△ADE就是△ABC的“夾補(bǔ)三角形”,AF叫做△ABC的“夾補(bǔ)中線”.
特例感知:
(1)如圖2、圖3中,△ABC與△ADE是一對(duì)“夾補(bǔ)三角形”,AF是△ABC的“夾補(bǔ)中線”;
①當(dāng)△ABC是一個(gè)等邊三角形時(shí),AF與BC的數(shù)量關(guān)系是: ;
②如圖3當(dāng)△ABC是直角三角形時(shí),∠BAC=90°,BC=a時(shí),則AF的長(zhǎng)是 ;
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AF與BC的關(guān)系,并給予證明.
拓展應(yīng)用:
(3)如圖4,在四邊形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等邊三角形,求證:△PCD是△PBA的“夾補(bǔ)三角形”,并求出它們的“夾補(bǔ)中線”的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E是射線AC上一點(diǎn),點(diǎn)F是正方形ABCD外角平分線CM上一點(diǎn),且CF=AE,連接BE,EF.
(1)如圖1,當(dāng)E是線段AC的中點(diǎn)時(shí),直接寫出BE與EF的數(shù)量關(guān)系;
(2)當(dāng)點(diǎn)E不是線段AC的中點(diǎn),其它條件不變時(shí),請(qǐng)你在圖2中補(bǔ)全圖形,判斷(1)中的結(jié)論是否成立,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)B,E,F在一條直線上時(shí),求∠CBE的度數(shù).(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于點(diǎn)O.
(1)求邊AB的長(zhǎng);
(2)如圖2,將一個(gè)足夠大的直角三角板60°角的頂點(diǎn)放在菱形ABCD的頂點(diǎn)A處,繞點(diǎn)A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點(diǎn)E,F,連接EF與AC相交于點(diǎn)G.
①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E為邊BC的四等分點(diǎn)時(shí)(BE>CE),求CG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com