【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|2a+6|+(2a﹣3b+12)2=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向左平移2個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD.
(1)請直接寫出A、B、C、D四點(diǎn)的坐標(biāo);
(2)如圖2,點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是線段CD的中點(diǎn),連接PQ,PO,當(dāng)點(diǎn)P在線段AC上移動(dòng)時(shí)(不與A,C重合),請找出∠PQD,∠OPQ,∠POB的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在坐標(biāo)軸上是否存在點(diǎn)M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,試說明理由.
【答案】(1)A(﹣3,0),B(2,0),C(-5,2),D(0,2);(2)∠PQD+∠OPQ+∠POB=360°,理由見解析;(3)(2,0)或(﹣8,0)或(0,﹣)或(0,)
【解析】
(1)根據(jù)絕對值的非負(fù)性、偶次方的非負(fù)性分別求出a、b,得到點(diǎn)A,B的坐標(biāo),即可解決問題;
(2)求出五邊形QPOBD的內(nèi)角和,根據(jù)平行線的性質(zhì)得到∠QDB+∠OBD=180°,計(jì)算即可;
(3)根據(jù)題意求出△ACD的面積,分點(diǎn)M在x軸上、點(diǎn)M在y軸上兩種情況,根據(jù)三角形的面積公式計(jì)算即可.
解:(1)∵|2a+6|+(2a﹣3b+12)2=0,
∴|2a+6|=0,(2a﹣3b+12)2=0,
解得,a=﹣3,b=2,
則點(diǎn)A,B的坐標(biāo)分別為A(﹣3,0),B(2,0);
將點(diǎn)A,B分別向左平移2個(gè)單位,再向上平移2個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,則C(-5,2)D(0,2);
(2)∠PQD+∠OPQ+∠POB=360°,
理由如下:五邊形QPOBD的內(nèi)角和=(5﹣2)×180°=540°,
∵CD∥AB,
∴∠QDB+∠OBD=180°,
∴∠PQD+∠OPQ+∠POB=540°﹣(∠QDB+∠OBD)=360°;
(3)由題意得,點(diǎn)C的坐標(biāo)為(﹣5,2),點(diǎn)D的坐標(biāo)為(0,2),
則△ACD的面積=×5×2=5,
當(dāng)點(diǎn)M在x軸上時(shí),設(shè)點(diǎn)M的坐標(biāo)為(x,0),
則AM=|﹣3﹣x|,
由題意得,×|﹣3﹣x|×2=5,
解得,x=2或﹣8,
當(dāng)點(diǎn)M在y軸上時(shí),設(shè)點(diǎn)M的坐標(biāo)為(0,y),
則AM=|2﹣y|,
由題意得,×|2﹣y|×3=5,
解得,y=﹣或,
綜上所述,三角形MAD的面積與三角形ACD的面積相等時(shí),點(diǎn)M的坐標(biāo)為(2,0)或(﹣8,0)或(0,﹣)或(0,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐 標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且sin ∠AOE=.
【1】求該反比例函數(shù)和一次函數(shù)的解析式
【2】求△AOC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形的邊長.某一時(shí)刻,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問:
(1)經(jīng)過多少時(shí)間,的面積等于矩形面積的?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),若△CDM周長的最小值為8,則△ABC的面積為( 。
A.12B.16C.24D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
組別 | 正確數(shù)字x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計(jì)表中,m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)扇形統(tǒng)計(jì)圖中“C組”所對應(yīng)的圓心角的度數(shù)是 .
(3)有三位評委老師,每位老師在E組學(xué)生完成學(xué)校比賽后,出示“通過”或“淘汰”或“待定”的評定結(jié)果.學(xué)校規(guī)定:每位學(xué)生至少獲得兩位評委老師的“通過”才能代表學(xué)校參加鄂州市“漢字聽寫”比賽,請用樹形圖求出E組學(xué)生王云參加鄂州市“漢字聽寫”比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA=2,以點(diǎn)A為圓心,1為半徑畫⊙A與OA的延長線交于點(diǎn)C,過點(diǎn)A畫OA的垂線,垂線與⊙A的一個(gè)交點(diǎn)為B,連接BC
(1)線段BC的長等于 ;
(2)請?jiān)趫D中按下列要求逐一操作,并回答問題:
①以點(diǎn) 為圓心,以線段 的長為半徑畫弧,與射線BA交于點(diǎn)D,使線段OD的長等于;
②連OD,在OD上畫出點(diǎn)P,使OP得長等于,請寫出畫法,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=x2﹣(2m+3)x+m2+2
(1)若二次函數(shù)y的圖象與x軸有兩個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.
(2)設(shè)二次函數(shù)y的圖象與x軸的交點(diǎn)為A(x1,0),B(x2,0),且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新的運(yùn)算“”:對于任意四個(gè)有理數(shù),,,,可以組成兩個(gè)有理數(shù)對與,并且規(guī)定:.
例如: .
根據(jù)上述規(guī)定解決下列問題:
(1)計(jì)算: ;
(2)若有理數(shù)對,則 ;
(3)若有理數(shù)對成立,則解得是整數(shù),求整數(shù)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2019年5月30日萬州牌樓長江大橋正式通車以來,大放光彩,引萬人駐足.市民們紛紛前往打卡、拍照留念,因此牌樓長江大橋成為了萬州網(wǎng)紅打卡地.周末,小棋和小藝兩位同學(xué)相約前往參觀,小棋騎自行車,小藝步行,她們同時(shí)從學(xué)校出發(fā),沿同一條路線前往,出發(fā)一段時(shí)間后小棋發(fā)現(xiàn)東西忘了,于是立即以原速返回到學(xué)校取,取到東西后又立即以原速追趕小藝并繼續(xù)前往,到達(dá)目的地后等待小藝一起參觀(取東西的時(shí)間忽略不計(jì)),在整個(gè)過程兩人保持勻速,如圖是兩人之間的距離與出發(fā)時(shí)間之間的函數(shù)圖象如圖所示,則當(dāng)小棋到達(dá)目的地時(shí),小藝離目的地還有______米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com