【題目】如圖,OA=2,以點A為圓心,1為半徑畫⊙A與OA的延長線交于點C,過點A畫OA的垂線,垂線與⊙A的一個交點為B,連接BC
(1)線段BC的長等于 ;
(2)請在圖中按下列要求逐一操作,并回答問題:
①以點 為圓心,以線段 的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于;
②連OD,在OD上畫出點P,使OP得長等于,請寫出畫法,并說明理由.
【答案】(1);(2)①A;BC;②答案見解析.
【解析】
試題分析:(1)由圓的半徑為1,可得出AB=AC=1,結(jié)合勾股定理即可得出結(jié)論;
(2)①結(jié)合勾股定理求出AD的長度,從而找出點D的位置,根據(jù)畫圖的步驟,完成圖形即可;
②根據(jù)線段的三等分點的畫法,結(jié)合OA=2AC,即可得出結(jié)論.
試題解析:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案為:.
(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC,∴以點A為圓心,以線段BC的長為半徑畫弧,與射線BA交于點D,使線段OD的長等于.
依此畫出圖形,如圖1所示.
故答案為:A;BC.
②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.
故作法如下:
連接CD,過點A作AP∥CD交OD于點P,P點即是所要找的點.
依此畫出圖形,如圖2所示.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點A(﹣1,0),頂點坐標(biāo)為(1,m).
(1)求該二次函數(shù)的關(guān)系式和m值;
(2)結(jié)合圖象,解答下列問題:(直接寫出答案)
①當(dāng)x取什么值時,該函數(shù)的圖象在x軸下方?
②當(dāng)﹣1<x<2時,直接寫出函數(shù)y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017濟寧,第21題,9分)已知函數(shù)的圖象與x軸有兩個公共點.
(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時函數(shù)的解析式;
(2)題(1)中求得的函數(shù)記為C1.
①當(dāng)n≤x≤﹣1時,y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)的圖象由函數(shù)C1的圖象平移得到,其頂點P落在以原點為圓心,半徑為的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點為M,求點P與點M距離最大時函數(shù)C2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿足|2a+6|+(2a﹣3b+12)2=0,現(xiàn)同時將點A,B分別向左平移2個單位,再向上平移2個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD.
(1)請直接寫出A、B、C、D四點的坐標(biāo);
(2)如圖2,點P是線段AC上的一個動點,點Q是線段CD的中點,連接PQ,PO,當(dāng)點P在線段AC上移動時(不與A,C重合),請找出∠PQD,∠OPQ,∠POB的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在坐標(biāo)軸上是否存在點M,使三角形MAD的面積與三角形ACD的面積相等?若存在,直接寫出點M的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的二元一次方程ax+b=y(a,b為常數(shù)且a≠0)
(1)該方程的解有 組;若a=﹣2,b=6,且x,y為非負整數(shù),請直接寫出該方程的解;
(2)若和是該方程的兩組解,且m1>m2
①若n1﹣n2=2(m2﹣m1),求a的值;
②若m1+m2=3b,n1+n2=ab+4,且b>2,請比較n1和n2大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個等式:,,給出定義如下:我們稱使等式成立的一對有理數(shù)為“有趣數(shù)對”,記為如:數(shù)對,都是“有趣數(shù)對”.
(1)數(shù)對,中是“有趣數(shù)對”的是 ;
(2)若是“有趣數(shù)對”,求的值;
(3)請再寫出一對符合條件的“有趣數(shù)對” ;(注意:不能與題目中已有的“有趣數(shù)對”重復(fù))
(4)若是“有趣數(shù)對”求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動課上,老師帶領(lǐng)學(xué)生測量一條南北流向的河的寬度,如圖所示,某學(xué)生在河?xùn)|岸點A處觀測到河對岸水邊有一點C,測得C在A北偏西31°的方向上,沿河岸向北前行10米到達B處,測得C在B北偏西45°的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計算出這條河的寬度.(精確到1米,參考數(shù)值:tan31°≈,sin31°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社會實踐小組開展調(diào)查,獲取了本校食堂學(xué)生早餐的營養(yǎng)情況,如圖是調(diào)查報告中的一部分,根據(jù)所得信息,解答下列問題.
(1)早餐中所含脂肪的質(zhì)量是______.
(2)若早餐中蛋白質(zhì)和碳水化合物所占百分比的和不高于85%,求早餐中所含碳水化合物質(zhì)量的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com