【題目】如圖,已知△ABC中,ADBC邊上的中線(xiàn),有以下結(jié)論:①AD平分∠BACABD的周長(zhǎng)-△ACD的周長(zhǎng)=ABAC;③BC=2AD;ABD的面積是△ABC面積的一半.其中正確的是(

A.①②④B.②③④C.②④D.③④

【答案】C

【解析】

根據(jù)三角形中線(xiàn)的定義即可判斷①和③;根據(jù)三角形的周長(zhǎng)公式即可判斷②;根據(jù)三角形的面積公式即可判斷④.

解:∵△ABC中,ADBC邊上的中線(xiàn),

BD=CD,但AD不一定平分∠BAC,故①錯(cuò)誤;

∵△ABD的周長(zhǎng)=ABBDAD,△ACD的周長(zhǎng)=ACCDAD

∴△ABD的周長(zhǎng)-△ACD的周長(zhǎng)=ABBDAD)-(ACCDAD

= ABAC,故②正確;

ADBC邊上的中線(xiàn),

BC=2BD,但BD不一定等于AD,

BC不一定等于2AD,故③錯(cuò)誤;

設(shè)點(diǎn)ABC的距離為h,

SABD=BD·hSABC=BC·h=×2BD·h= BD·h

∴△ABD的面積是△ABC面積的一半,故④正確.

故正確的結(jié)論有②④.

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形ABCD是平行四邊形,按下列條件得到的四邊形BFDE是平行四邊形的個(gè)數(shù)是( 。

①圖甲,DEAC,BFAC

②圖乙,DE平分∠ADCBF平分∠ABC

③圖丙,EAB的中點(diǎn),FCD的中點(diǎn)

④圖丁,EAB上一點(diǎn),EFAB

A. 3個(gè)B. 4個(gè)C. 1個(gè)D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,是一個(gè)8×10正方形格紙,ABCA點(diǎn)坐標(biāo)為(-21.

1)補(bǔ)全坐標(biāo)系并指出ABCABC'滿(mǎn)足什么幾何變換(直接寫(xiě)答案)?

2)作ABC'關(guān)于x軸對(duì)稱(chēng)圖形A''B''C'';

3ABCA''B''C''滿(mǎn)足什么幾何變換?求A''、B''、C''三點(diǎn)坐標(biāo)(直接寫(xiě)答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為6,AC3,現(xiàn)將ABC沿AB所在直線(xiàn)翻折,使點(diǎn)C落在直線(xiàn)AD上的處,P為直線(xiàn)AD上的任意一點(diǎn),則線(xiàn)段BP的最短長(zhǎng)度為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開(kāi)挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說(shuō)法中,正確的個(gè)數(shù)有( )個(gè).
①甲隊(duì)每天挖100米;
②乙隊(duì)開(kāi)挖兩天后,每天挖50米;
③當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長(zhǎng)度相同;
④甲隊(duì)比乙隊(duì)提前2天完成任務(wù).

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,P為AD邊上一點(diǎn),沿直線(xiàn)BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PE與CD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=(x﹣1)2+k分別與x軸、y軸交于A、B、C三點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線(xiàn)y=﹣ x+2經(jīng)過(guò)點(diǎn)B,且與y軸交于點(diǎn)D.
(1)如圖1,求k的值;

(2)如圖2,在第一象限的拋物線(xiàn)上有一動(dòng)點(diǎn)P,連接AP,過(guò)P作PE⊥x軸于點(diǎn)E,過(guò)E作EF⊥AP于點(diǎn)F,過(guò)點(diǎn)D作平行于x軸的直線(xiàn)分別與直線(xiàn)FE、PE交于點(diǎn)G、H,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段GH的長(zhǎng)為d,求d與t的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;

(3)在(2)的條件下,過(guò)點(diǎn)G作平行于y軸的直線(xiàn)分別交AP、x軸和拋物線(xiàn)于點(diǎn)M、T和N,tan∠MEA= ,點(diǎn)K為第四象限拋物線(xiàn)上一點(diǎn),且在對(duì)稱(chēng)軸左側(cè),連接KA,在射線(xiàn)KA上取一點(diǎn)R,連接RM,過(guò)點(diǎn)K作KQ⊥AK交PE的延長(zhǎng)線(xiàn)于Q,連接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ與△HKQ的面積相等,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,ADBC邊上的高,∠BDE=∠CDF=30°,在下列結(jié)論中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線(xiàn)AC上有一點(diǎn)P使PE+PD的和最小,這個(gè)最小值為( )

A. B. C. 3 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案