【題目】閱讀材料:

在一個三角形中,各邊和它所對角的正弦的比相等, ,利用上述結(jié)論可以求解如下題目:

ABC中,∠A、B、C的對邊分別為a,b,c.若∠A=45°,B=30°,a=6,求b

解:在ABC中,∵

b=.

理解應(yīng)用:

如圖,甲船以每小時30海里的速度向正北方向航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.

1)判斷A1A2B2的形狀,并給出證明;

2)求乙船每小時航行多少海里?

【答案】1A1A2B2是等邊三角形,理由見解析;(2海里.

【解析】試題分析:1A1A2B2是等邊三角形,先計算出A1A2的長度,再結(jié)合A2B2的長度和∠A1A2B2的度數(shù)不難證明A1A2B2是等邊三角形;(2過點(diǎn)BB1NA1A2可求出∠A1B1N=75°,進(jìn)而求出∠A1B1B2=60°,接下去求出∠B1A1B2=45°,由閱讀材料可知=,可求出B1B2的長度,不難求出乙的速度.

試題解析:

解:(1A1A2B2是等邊三角形,理由如下:

連結(jié)A1B2

∵甲船以每小時30海里的速度向正北方向航行,航行20分鐘到達(dá)A2

A1A2=30×=10,

又∵A2B2=10,A1A2B2=60°

∴△A1A2B2是等邊三角形;

2)過點(diǎn)BB1NA1A2,如圖,

B1NA1A2

∴∠A1B1N=180°﹣B1A1A2=180°﹣105°=75°,

∴∠A1B1B2=75°﹣15°=60°

∵△A1A2B2是等邊三角形,

∴∠A2A1B2=60°,A1B2=A1A2=10,

∴∠B1A1B2=105°﹣60°=45°

B1A1B2中,

A1B2=10B1A1B2=45°,A1B1B2=60°,

由閱讀材料可知, =,

解得B1B2==

所以乙船每小時航行: ÷=20海里.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列判斷錯誤的是( )

A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD

C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).

(1)求b、c的值;

(2)P為拋物線上的點(diǎn),且滿足SPAB=8,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將紙片ABC沿DE折疊使點(diǎn)A落在點(diǎn)A’.

(感知)如圖①,點(diǎn)A’落在四邊形BCDE的邊BE上,則∠A與∠1之間的數(shù)量關(guān)系是 .

(探究)如圖②,若A’點(diǎn)落在四邊形BCDE的內(nèi)部,則∠A與∠1+2之間存在怎樣的數(shù)量關(guān)系?并說明理由?

(拓展)如圖③,點(diǎn)A’落在四邊形BCDE的外部,若∠1=80°,∠2=24°,則∠A的大小為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,已知、三點(diǎn),其中、滿足關(guān)系式, .

(1)=_______; =________; =_______.

(2)如果點(diǎn)是第二象限內(nèi)的一個動點(diǎn),坐標(biāo)為.將四邊形的面積用表示,請你寫出關(guān)于的函數(shù)表達(dá)式,并寫出自變量的取值范圍.

(3)在(2)的條件下,是否存在點(diǎn),使得四邊形的面積的面積相等?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,根據(jù)以下作圖過程:

(1)分別以點(diǎn)A、點(diǎn)B為圓心,大于AB長的為半徑作弧,兩弧相交于C、D兩點(diǎn);

(2)C、D兩點(diǎn)作直線CD

求證:直線CD是線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為10的菱形ABCD中,對角線BD16,對角線AC,BD相交于點(diǎn)G,點(diǎn)O是直線BD上的動點(diǎn),OEABE,OFADF.

(1)求對角線AC的長及菱形ABCD的面積.

(2)如圖①,當(dāng)點(diǎn)O在對角線BD上運(yùn)動時,OEOF的值是否發(fā)生變化?請說明理由.

(3)如圖②,當(dāng)點(diǎn)O在對角線BD的延長線上時,OEOF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場平時以同樣價格出售相同的商品,春節(jié)期間兩家商場都讓利酬賓,其中甲商場所有商品按8折出售,乙商場對一次購物中超過200元后的價格部分打7折.
1)以x(單位:元)表示商品原價,y(單位:元)表示購物金額,分別就兩家商場的讓利方式寫出y關(guān)于x的函數(shù)解析式;
2)在同一直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;
3)春節(jié)期間如何選擇這兩家商場去購物更省錢?

查看答案和解析>>

同步練習(xí)冊答案