【題目】如圖,已知線段AB,根據(jù)以下作圖過程:
(1)分別以點A、點B為圓心,大于AB長的為半徑作弧,兩弧相交于C、D兩點;
(2)過C、D兩點作直線CD.
求證:直線CD是線段AB的垂直平分線.
【答案】見解析
【解析】
連接AC、BC、AD、BD,根據(jù)SSS證明△ACD≌BCD,從而得到∠ACO=∠BCO、∠ADO=∠BDO,再根據(jù)SAS證明△AOC≌BOC,△AOD≌△BOD,從而得到AO=BO,OC⊥AB,OC⊥AB,再得出結論.
連接AC、BC、AD、BD,如圖所示:
∵分別以點A、點B為圓心,大于AB長的為半徑作弧,兩弧相交于C、D兩點,
∴AC=BC,AD=BD,
在△ACD和△BCD中
,
∴△ACD≌△BCD,
∴∠ACO=∠BCO、∠ADO=∠BDO,
在△AOC和△BOC中,
,
∴△AOC≌BOC,
∴OA=OB,∠COA=∠COB=90,
∴OC垂直平分AB,
同理可證△AOD≌△BOD,OC垂直平分AB,
∴直線CD是線段AB的垂直平分線.
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由. |
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結論
當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過點E作EF∥BC,交AC于點F.
(請你完成以下解答過程)
(3)拓展結論,設計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點B,與反比例函數(shù)(k﹥0)的圖像交于點C,過點C作CH⊥x軸,點D是反比例函數(shù)圖像上的一點,直線CD與x軸交于點A,若∠HCB=∠HCA,且BC=10,BA=16.
(1)若OA=11,求k的值;
(2)沿著x軸向右平移直線BC,若直線經(jīng)過H點時恰好又經(jīng)過點D,求一次函數(shù)函數(shù)y=mx+n的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等, ,利用上述結論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵
∴b=.
理解應用:
如圖,甲船以每小時30海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.
(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB=AD,∠1=∠2,以下條件中,不能推出△ABC≌△ADE的是( )
A. AE=AC B. ∠B=∠D C. BC=DE D. ∠C=∠E
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.
(1)判斷直線AC與圓O的位置關系,并證明你的結論;
(2)若AC=8,cos∠BED=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+2x+c的圖象與x軸交于點A和點B(1,0),以AB為邊在x軸上方作正方形ABCD,動點P從點A出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,同時動點Q從點C出發(fā),以每秒1個單位長度的速度沿CB勻速運動,當點Q到達終點B時,點P停止運動,設運動時間為t秒.連接DP,過點P作DP的垂線與y軸交于點E.
(1)求二次函數(shù)的解析式及點A的坐標;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,并求出這個最大值;
(3)在P,Q運動過程中,求當△DPE與以D,C,Q為頂點的三角形相似時t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,點C′恰好落在拋物線的對稱軸上?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中直線:分別與x軸,y軸交于點A和點B,過點A的直線與y軸交于點C,.
(1)求直線的解析式;
(2)若D為線段上一點,E為線段上一點,當時,求的最小值,并求出此時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級八個班共有280名學生,男女生人數(shù)大致相同,調(diào)查小組為調(diào)查學生的體質(zhì)健康水平,開展了一次調(diào)查研究,請將下面的過程補全.
收集數(shù)據(jù):
(1)調(diào)查小組計劃選取40名學生的體質(zhì)健康測試成績作為樣本,下面的取樣方法中,合理的是___________(填字母);
A.抽取九年級1班、2班各20名學生的體質(zhì)健康測試成績組成樣本
B.抽取各班體育成績較好的學生共40名學生的體質(zhì)健康測試成績組成樣本
C.從年級中按學號隨機選取男女生各20名學生學生的體質(zhì)健康測試成績組成樣本
整理、描述數(shù)據(jù):
抽樣方法確定后,調(diào)查小組獲得了40名學生的體質(zhì)健康測試成績?nèi)缦拢?/span>
77 83 80 64 86 90 75 92 83 81
85 86 88 62 65 86 97 96 82 73
86 84 89 86 92 73 57 77 87 82
91 81 86 71 53 72 90 76 68 78
整理數(shù)據(jù),如下表所示:
2018年九年級部分學生學生的體質(zhì)健康測試成績統(tǒng)計表
1 | 1 | 2 | 2 | 4 | 5 | 5 | 2 |
分析數(shù)據(jù)、得出結論
調(diào)查小組將統(tǒng)計后的數(shù)據(jù)與去年同期九年級的學生的體質(zhì)健康測試成績(直方圖)進行了對比,
(2)你能從中得到的結論是_____________,你的理由是________________________________.
(3)體育老師計劃根據(jù)2018年的統(tǒng)計數(shù)據(jù)安排75分以下的同學參加體質(zhì)加強訓練項目,則全年級約有________名同學參加此項目.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com