【題目】如圖,已知線段AB,根據(jù)以下作圖過程:

(1)分別以點A、點B為圓心,大于AB長的為半徑作弧,兩弧相交于C、D兩點;

(2)C、D兩點作直線CD

求證:直線CD是線段AB的垂直平分線.

【答案】見解析

【解析】

連接AC、BCAD、BD,根據(jù)SSS證明△ACDBCD,從而得到∠ACO=∠BCO、∠ADO=∠BDO,再根據(jù)SAS證明△AOCBOC,△AOD≌△BOD,從而得到AOBO,OCAB,OCAB,再得出結論.

連接ACBC、ADBD,如圖所示:

∵分別以點A、點B為圓心,大于AB長的為半徑作弧,兩弧相交于CD兩點,

AC=BC,AD=BD,

在△ACD和△BCD

,

∴△ACD≌△BCD,

∴∠ACO=∠BCO、∠ADO=∠BDO,

在△AOC和△BOC中,

,

∴△AOCBOC,

OAOB,∠COA=∠COB90,

OC垂直平分AB

同理可證△AOD≌△BOD,OC垂直平分AB

∴直線CD是線段AB的垂直平分線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點B,與反比例函數(shù)(k0)的圖像交于點C,過點CCHx軸,點D是反比例函數(shù)圖像上的一點,直線CDx軸交于點A,若HCB=∠HCA,且BC=10,BA=16

1)若OA=11,求k的值;

2)沿著x軸向右平移直線BC,若直線經(jīng)過H點時恰好又經(jīng)過點D,求一次函數(shù)函數(shù)y=mx+n的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

在一個三角形中,各邊和它所對角的正弦的比相等, ,利用上述結論可以求解如下題目:

ABC中,∠A、B、C的對邊分別為a,b,c.若∠A=45°,B=30°a=6,求b

解:在ABC中,∵

b=.

理解應用:

如圖,甲船以每小時30海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距10海里.

1)判斷A1A2B2的形狀,并給出證明;

2)求乙船每小時航行多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB=AD,∠1=∠2,以下條件中,不能推出△ABC≌△ADE的是( )

A. AE=AC B. ∠B=∠D C. BC=DE D. ∠C=∠E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使BED=C.

(1)判斷直線AC與圓O的位置關系,并證明你的結論;

(2)若AC=8,cosBED=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+2x+c的圖象與x軸交于點A和點B1,0),以AB為邊在x軸上方作正方形ABCD,動點P從點A出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,同時動點Q從點C出發(fā),以每秒1個單位長度的速度沿CB勻速運動,當點Q到達終點B時,點P停止運動,設運動時間為t秒.連接DP,過點PDP的垂線與y軸交于點E

1)求二次函數(shù)的解析式及點A的坐標;

2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,并求出這個最大值;

3)在P,Q運動過程中,求當DPE與以D,C,Q為頂點的三角形相似時t的值;

4)是否存在t,使DCQ沿DQ翻折得到DC′Q,點C′恰好落在拋物線的對稱軸上?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中直線分別與x軸,y軸交于點A和點B,過點A的直線y軸交于點C

1)求直線的解析式;

2)若D為線段上一點,E為線段上一點,當時,求的最小值,并求出此時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級八個班共有280名學生,男女生人數(shù)大致相同,調(diào)查小組為調(diào)查學生的體質(zhì)健康水平,開展了一次調(diào)查研究,請將下面的過程補全.

收集數(shù)據(jù):

(1)調(diào)查小組計劃選取40名學生的體質(zhì)健康測試成績作為樣本,下面的取樣方法中,合理的是___________(填字母);

A.抽取九年級1班、2班各20名學生的體質(zhì)健康測試成績組成樣本

B.抽取各班體育成績較好的學生共40名學生的體質(zhì)健康測試成績組成樣本

C.從年級中按學號隨機選取男女生各20名學生學生的體質(zhì)健康測試成績組成樣本

整理、描述數(shù)據(jù):

抽樣方法確定后,調(diào)查小組獲得了40名學生的體質(zhì)健康測試成績?nèi)缦拢?/span>

77 83 80 64 86 90 75 92 83 81

85 86 88 62 65 86 97 96 82 73

86 84 89 86 92 73 57 77 87 82

91 81 86 71 53 72 90 76 68 78

整理數(shù)據(jù),如下表所示:

2018年九年級部分學生學生的體質(zhì)健康測試成績統(tǒng)計表

1

1

2

2

4

5

5

2

分析數(shù)據(jù)、得出結論

調(diào)查小組將統(tǒng)計后的數(shù)據(jù)與去年同期九年級的學生的體質(zhì)健康測試成績(直方圖)進行了對比,

(2)你能從中得到的結論是_____________,你的理由是________________________________.

(3)體育老師計劃根據(jù)2018年的統(tǒng)計數(shù)據(jù)安排75分以下的同學參加體質(zhì)加強訓練項目,則全年級約有________名同學參加此項目.

查看答案和解析>>

同步練習冊答案