【題目】如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使∠BED=∠C.
(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)若AC=8,cos∠BED=,求AD的長.
【答案】(1)AC與⊙O相切,證明參見解析;(2).
【解析】
試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內(nèi)角和定理,可求∠OAC=90°,即AC是⊙O的切線;(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數(shù)值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數(shù)值,可求AD.
試題解析:(1)AC與⊙O相切.∵弧BD是∠BED與∠BAD所對(duì)的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC與⊙O相切;(2)連接BD.∵AB是⊙O直徑,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=ABcos∠OAD=12×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】比鄰而居的蝸牛神和螞蟻王相約,第二天上午8時(shí)結(jié)伴出發(fā),到相距16米的銀杏樹下參加探討環(huán)境保護(hù)問題的微型動(dòng)物首腦會(huì)議.蝸牛神想到“笨鳥先飛”的古訓(xùn),于是給螞蟻王留下一紙便條后提前2小時(shí)獨(dú)自先行,螞蟻王按既定時(shí)間出發(fā),結(jié)果它們同時(shí)到達(dá).已知螞蟻王的速度是蝸牛神的4倍,求它們各自的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三條線段a=5,b=3,c的值為整數(shù),由a、b、c為邊可組成三角形( )
A. 1個(gè) B. 3個(gè) C. 5個(gè) D. 無數(shù)個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.點(diǎn)P(1,﹣2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是( 。
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A.圓既是軸對(duì)稱圖形又是旋轉(zhuǎn)對(duì)稱圖形B.一個(gè)圓的直徑的長是它半徑的2倍
C.圓的每一條直徑都是它的對(duì)稱軸D.直徑是圓的弦,但半徑不是弦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1,l2,l3之間的距離為2,過點(diǎn)A作AE⊥l3于點(diǎn)E,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)小聰是個(gè)數(shù)學(xué)愛好者,他發(fā)現(xiàn)從1開始,連續(xù)幾個(gè)奇數(shù)相加,和的變化規(guī)律如右表所示:
加數(shù)個(gè)數(shù) | 連續(xù)奇數(shù)的和S |
1 | 1= |
2 | 1+3=22 |
3 | 1+3+5=32 |
4 | 1+3+5+7=42 |
5 | 1+3+5+7+9=52 |
n | … |
(1)如果n=7,則S的值為 ;
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com