【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點(diǎn)B,與反比例函數(shù)(k0)的圖像交于點(diǎn)C,過(guò)點(diǎn)CCHx軸,點(diǎn)D是反比例函數(shù)圖像上的一點(diǎn),直線CDx軸交于點(diǎn)A,若HCB=∠HCA,且BC=10,BA=16

1)若OA=11,求k的值;

2)沿著x軸向右平移直線BC,若直線經(jīng)過(guò)H點(diǎn)時(shí)恰好又經(jīng)過(guò)點(diǎn)D,求一次函數(shù)函數(shù)y=mx+n的表達(dá)式.

【答案】1k=18;(2

【解析】

(1)由∠HCB=HCACHx軸得到△CHB≌△CHA,推出BH=HA=8,由BC=6根據(jù)勾股定理求出CH,由OA=11進(jìn)而得出C點(diǎn)坐標(biāo),求得k值;

(2)過(guò)D點(diǎn)作DNx軸于N點(diǎn),由HAB中點(diǎn)且HDBC得到DAC的中點(diǎn),設(shè)C點(diǎn)坐標(biāo),進(jìn)而表示出D點(diǎn)坐標(biāo),根據(jù)k相等即可建立方程求解.

解:(1)CHx

∴∠CHB=CHA=90°

在△CHB和△CHA

,∴△CHB≌△CHA(ASA)

BH=AH=AB=8

在△BCH中,由勾股定理可知:

OH=OA-AH=11-8=3

C點(diǎn)的坐標(biāo)為:(3,6)

∴反比例的k=3×6=18.

故答案為:18.

(2) 過(guò)D點(diǎn)作DNx軸于N點(diǎn),如下圖所示:

設(shè)C點(diǎn)坐標(biāo)為(a,6),OH=a,CH=6

HDBC,且HAB的中點(diǎn)可知

HD是△ABC的中位線,且DAC的中點(diǎn)

DNCH,∴DNCH

DN是△ACH的中位線

DN=CH=4,HN=NA=AH=4

ON=OH+HN=a+4

D點(diǎn)的坐標(biāo)為(a+4,3)

又∵CD均在反比例函數(shù)上,

6×a=(a+4)×3

解之得:a=4,故C點(diǎn)坐標(biāo)為(4,6)

BO=BH-OH=8-4=4,B點(diǎn)坐標(biāo)為(-4,0)

C(4,6)B(-4,0)代入y=mx+n

,解之得:

故一次函數(shù)的解析式為:.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù)。例如:M{1,0,2}= ;min{1,0,2}=1;min{1,0,a}= .如果M{2,x+1,2x}=min{2,x+1,2x},則x的值是( )

A.B.C.1D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿y軸以每秒1個(gè)單位長(zhǎng)的速度向上移動(dòng),且過(guò)點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)t=2時(shí),則AP= ,此時(shí)點(diǎn)P的坐標(biāo)是 。

(2)當(dāng)t=3時(shí),求過(guò)點(diǎn)P的直線l:y=-x+b的解析式?

(3)當(dāng)直線l:y=-x+b從經(jīng)過(guò)點(diǎn)M到點(diǎn)N時(shí),求此時(shí)點(diǎn)P向上移動(dòng)多少秒?

(4)點(diǎn)Q在x軸時(shí),若S△ONQ=8時(shí),請(qǐng)直按寫出點(diǎn)Q的坐標(biāo)是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).

(1)求b、c的值;

(2)P為拋物線上的點(diǎn),且滿足SPAB=8,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊 ABC中,D是邊AC上一點(diǎn),連接BD. BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到 BAE,連接ED. BC=10,BD=9,求 AED的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將紙片ABC沿DE折疊使點(diǎn)A落在點(diǎn)A’.

(感知)如圖①,點(diǎn)A’落在四邊形BCDE的邊BE上,則∠A與∠1之間的數(shù)量關(guān)系是 .

(探究)如圖②,若A’點(diǎn)落在四邊形BCDE的內(nèi)部,則∠A與∠1+2之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由?

(拓展)如圖③,點(diǎn)A’落在四邊形BCDE的外部,若∠1=80°,∠2=24°,則∠A的大小為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB,根據(jù)以下作圖過(guò)程:

(1)分別以點(diǎn)A、點(diǎn)B為圓心,大于AB長(zhǎng)的為半徑作弧,兩弧相交于C、D兩點(diǎn);

(2)過(guò)C、D兩點(diǎn)作直線CD

求證:直線CD是線段AB的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B(-1,4),點(diǎn)A(-7,0),點(diǎn)P是直線上一點(diǎn),且∠ABP=45°,則點(diǎn)P的坐標(biāo)為____.

查看答案和解析>>

同步練習(xí)冊(cè)答案