【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機地傳給B,C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.

(1)求兩次傳球后,球恰在B手中的概率;

(2)求三次傳球后,球恰在A手中的概率.

【答案】(1;(2

【解析】試題分析:(1)直接列舉出兩次傳球的所有結(jié)果,球球恰在B手中的結(jié)果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結(jié)果,三次傳球后,球恰在A手中的結(jié)果有2種,即可求出三次傳球后,球恰在A手中的概率.

試題解析:

解:(1)兩次傳球的所有結(jié)果有4種,分別是A→B→C,A→B→A,A→C→BA→C→A.每種結(jié)果發(fā)生的可能性相等,球球恰在B手中的結(jié)果只有一種,所以兩次傳球后,球恰在B手中的概率是;

2)樹狀圖如下,

由樹狀圖可知,三次傳球的所有結(jié)果有8種,每種結(jié)果發(fā)生的可能性相等.其中,三次傳球后,球恰在A手中的結(jié)果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球,如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將P向右平移2個單位,再向下平移2個單位得點P′(32),則點P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1)(15x2y﹣10xy2)÷(﹣5xy); (2)(m+2n+3)(m+2n﹣3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知1號、4號兩個正方形的面積和為10, 2號、3號兩個正方形的面積和為7,則a,b,c三個方形的面積和為( )

A.17
B.27
C.24
D.34

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)﹣150+5﹣(﹣63)
(2)﹣6×(﹣16)﹣(﹣16)÷8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班組織班團活動,班委會準(zhǔn)備用15元錢全部用來購買筆記本和中性筆兩種獎品,已知筆記本2/本,中性筆1/支,且每種獎品至少買1件.

1)若設(shè)購買筆記本x本,中性筆y支,寫出yx之間的關(guān)系式;

2)有多少種購買方案?請列舉所有可能的結(jié)果;

3)從上述方案中任選一種方案購買,求買到的中性筆與筆記本數(shù)量相等的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.

(1)尺規(guī)作圖:過點B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫作法);

(2)求證:AD=BC.

查看答案和解析>>

同步練習(xí)冊答案